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Abstract

In the present study, the primary aim concentrates on the modeling of hurricane force

winds; that is, maximum sustained winds related to pressure, location and linear velocity.

We were successful in modeling the wind speed within storm as a function of the

contributing entities. In this study, we were able to re-evaluate the association between

wind speed and pressure within storms and know this will lead to historical

breakthroughs in how we see hurricanes and predict hurricanes. This paper is the first

paper of a series, and its analysis of wind speed versus pressure indicates that further

analysis of the Saffir-Simpson Scale is necessary, as well as determining if pressure is an

indicator or a consequence of a hurricane force wind speed.
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Introduction

There are statistical models in forecasting the track of hurricanes, but how well do

we understand the mechanics underlying the birth and pathway of a tropical storm. At

each level, we must rank the explanatory variables according to their contribution to the

model and determine if it is possible to average categories. What is the difference in

directional movement with respect to the season? Furthermore, what are the interactions?

Is the best-fit model linear or non-linear? How well do the obtained models predictions

compare with actual data?

Data containing wind speed, pressure and location of five category five storms

Data gleaned from UNISYS Tropical Prediction Center: for this paper only the

five most recent storms classified as category 5 are considered. Provision included:

charts on the track of the storm, tracking information, position in latitude and longitude,

maximum sustained winds in knots, and central pressure in millibars.

Year Storms Max Sustained Wind Pressure Color
2005 Wilma 150 882 Purple
2005 Rita 150 ---- Red
2005 Katrina 150 902 Orange
2004 Ivan 145 910 Green
2003 Isabel 140 920 Blue
Table 1: Table of maximum hurricane force winds and their associated
pressures for five resent storms in the Atlantic region

These five storms will provide a glimpse into understanding the transitions

between Category 0 (tropical storm) to Category 1, etc.
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Modeling maximum sustained winds in hurricane conditions using

The phenomenon of hurricane force winds depends on the surrounding pressure

as well as the latitude at which the circulations form. Hurricanes cannot form on the

equator thanks to the Coriolis effect.

Primary variables available with hurricane records

w Maximum sustained wind speed
P Pressure at center
LAT Longitude (in radians)
LON Latitude (in radians)
x Converted to Cartesian coordinates
y Converted to Cartesian coordinates

x The change in x
y The change in y
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Foremost, either wind speed or pressure could be considered as the response

variable; however, the believe is the low pressures cause hurricanes to form, therefore in

this paper we will treat the wind speed as the response variable and the pressure to be a

contributing or explanatory variable.

Furthermore, the measurements of latitude and longitude are not uniformly scaled,

they exist in a sphere; therefore latitudes for various longitudes are further apart near the



4

equator and closer together near the poles. To try modeling hurricanes into terms of its

position, these measurements first need to conversion to a Cartesian coordinates; where

linear movements are a valid measure and therefore approximation linear velocities exist.

Conversion for latitude and longitude into Cartesian coordinates

If we let ma 6378137 ,
25722563.298

1
b , 22 2 bbc  , mh 100 (height

above geoids) and
)sin1( 22 bb

a
v


 , then LONLAThvx coscos)(  and

LONLAThvy sincos)(  .

Comparison of Latitude versus Longitude and the Cartesian coordinate using five storms

Figure 1: Scatter plot of latitude versus

longitude

Figure 2: Scatter plot of converted

latitude versus longitude into Cartesian

coordinates x and y
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It is interesting to note that four out of five of the storms move west the further north the

storms moves, but the last storm moves mainly east as the storm moves. Furthermore, as

illustrated in Figure 3, this single storm started were the other four storms ended and

ended where two of the other storms began. As for the latitude, the all storms started

closer to the equator as illustrate in Figure 4 and possible with a few wobbles, moves

north.

What is the difference in directional movement with respect to the season?

Figure 3: Line graph for longitude Figure 4: Line graph for latitude

Notice that Wilma occurred during winter when the earths rotation with respect to

the sun is in the southern hemisphere, whereas the other four storms were in the summer

months when the earths rotation with respect to the sun is in the northern hemisphere. See

appendix A. This will be significant when modeling the directionality of future

hurricanes.
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Figure 5: Line graph for converted

latitude and longitude with respect to x

Figure 6: Line graph for converted

latitude and longitude with respect to y

However, in the paper, we will be interested in which parameter to include in the

model: latitude and longitude or the transformed x and y . Since x and y illustrate the

real linear movement of the storm, these transformed information with be included in the

following model.

Ranking of independent variables by maximum improvement in 2R

1. Pressure P 90.72%
2. x 93.00%
3. y 94.03%

4. Duration D 94.34%
5. Day of Year d 94.55%
6. Velocity v 94.79%
7. dx 94.88%
8. dy 95.07%

9. dt 95.17%
10. Distance  95.19%
11. Year Y 95.19% (No improvement)

Table 2: Ranking of independent variables
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Linear Regression

First, we will consider the regression using all categories within the five selected

hurricanes and all parameters ranked in Table 1.






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

Yaadtadyadxa

vadaDayaxaPaa
w
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ˆˆˆˆˆ

ˆˆˆˆˆˆˆ
ˆ


)1(

Regressing this model using the data outlined above, we have the following printout

including the associated p-values, see Figure 7.

Initial Model: Full linear model

Figure 7: Multiple regression of wind speed over pressure,

time, location and other associated measures
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Figure 8: Residual plot for model

outlined in Figure 7

Figure 9: Normal probability plot for the

residuals of the model outlined in Figure 7

Note: tv , therefore this model actually contains the interaction of between

velocities and the change in time and is insignificant. Other insignificant variables are the

change in time and the year. Moreover, there is an obvious bowing of the data.

Therefore, it illustrates the fact that there is at least one higher order term.

Model One: Full linear model with significant linear terms and quadratic term
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Figure 10: Multiple regression including significant linear

terms and a single quadratic term for pressure

Figure 11: Residual plot for model

outlined in Figure 10

Figure 12: Normal probability plot for

the residuals of the model outlined in

Figure 10

This yields %1.962 R and %0.962 adjR , over the previous %2.952 R and

%1.952 adjR .

Model One (I):
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Comparison of Model I predictions and the recorded Wind Speed

Figure 13: Simple linear regression to compare predicted

values using Model I to that of the actual wind speed

Figure 14: Scatter plot of predicted

values using Model I versus the actual

wind speed

Figure 15: Residual plot for Model I
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Figure 16: Normal probability plot for

the residuals of Model I

Therefore, 96.1% of the variation in the wind speed is explained by the five main

explanatory variables outlined as primary variables in the study; namely, pressure,

latitude and longitude converted, day of year and duration. For the simple

transformations used to obtain the remaining contributing entities see the outlined section

labeled conversion for latitude and longitude into Cartesian coordinates.
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Additional Interaction between three most significant factors

Interactive Model:

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Figure 17: Multiple regression including significant linear

terms, a single quadratic term for pressure and interaction

Figure 18: Residual plot for the model

outlined in Figure 17

Figure 19: Normal probability plot for

the model outlined in Figure 17
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Of the included interactions, there is only one insignificant interaction; that is, the

pressure P is not interactive with the coordinate x .

Model Two (II): Full linear model with quadratic term and significant interaction

Model II:
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Figure 20: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction
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Figure 21: Residual plot for model (2) Figure 22: Normal probability plot for

model (2)

This yields %1.972 R and %0.972 adjR , with or without interaction between the

pressure and the converted x value. Invoking the law of parsimony, we will not include

this interaction in our model.

Comparison of Model II predictions and the recorded Wind Speed

Figure 23: Simple linear regression to compare predicted

values using Model II to that of the actual recorded wind

speed
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Figure 24: Scatter plot of predicted

values using Model II versus the actual

wind speed

Figure 25: Residual plot for Model II

Figure 26: Normal probability plot

for the residuals of Model II
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Predictions using both models for each hurricane compared with record wind speed

Figure 27: Line graph comparison for hurricane Wilma

Figure 28: Line graph comparison for

hurricane Rita

Figure 29: Line graph comparison for

hurricane Katrina
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Figure 30: Line graph comparison for

hurricane Ivan

Figure 31: Line graph comparison for

hurricane Isabel

Model 20: Model II (2) for category zero storms (tropical storms and depressions)

Figure 32: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category zero only



18

Here the see with such low wind speeds, our model is less reliable; that is, the model

when estimated using only data defined as a tropical storm or depression explains only

81.8% of the variation in the wind speed.

Figure 33: Residual plot for model (20) Figure 34: Normal probability plot for

the residuals of model (20)

Model 20:
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The wind speed depends less on the latitude and longitude, and more on the change in

latitude and longitude. Recall: ),( LONLATfx  and ),( LONLATgy 
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Predictions for hurricane Ivan Category 0:

Wind Speed Model 20 Model 2

25 31.9 29.0

25 30.8 28.8

35 35.6 35.9

40 35.5 37.7

45 42.0 42.8

45 46.3 45.5

50 48.2 48.4

50 48.6 47.9

50 53.5 53.8

60 58.1 57.9

60 55.4 62.9

50 51.3 54.4

30 45.4 46.5

15 29.8 29.6

15 24.7 24.8

15 22.2 21.3

15 21.0 20.8

15 20.2 19.6

10 21.9 19.8

10 4.3 3.5

30 36.1 31.6

35 38.5 38.6

35 38.5 39.6

35 38.1 39.1

40 33.9 34.2

50 43.8 43.1

45 29.9 28.3

40 30.8 29.4

40 32.2 31.2

30 30.8 29.3

25 25.7 25.6

20 14.8 15.8

Table 3: Wind speed, predictions for

model 20 and model 2
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Figure 35: Scatter plot for model 20 and

recorded wind speed

Figure 36: Scatter plot for model 2 and

recorded wind speed

Figure 37: Scatter plot of predictions using model 2 versus model 20

We see these models are more concurrent for the lower wind speeds. As the wind

speeds increase, there is more disparity between the two models, but are highly correlated

with %1.982 R and %0.982 adjR . Notice however, the recorded data is only

measured in multiples of five.



21

Model 21: Model (2) for category one storms

Figure 38: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category one only

Figure 39: Residuals for model 21 Figure 40: Normal probability plot for

model 21
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Predictions for hurricane Ivan Category 1

Wind Model 21 Model 2

65 65.1 65.5

75 74.8 75.3

70 69.9 78.5

65 62.7 68.0

Table 4: Wind speed, predictions

for model 21 and model 2

Model 22: Model (2) for category two storms

Figure 41: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category two only
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Figure 42: Residuals for model 22 Figure 43: Normal probability plot for

model 22

Predictions for hurricane Ivan Category 2:

Wind Model 22 Model 2

90 92.5 93.4

90 91.5 98.3

90 91.4 99.1

90 91.3 96.6

95 92.0 95.2

Table 5: Wind speed, predictions

for model 22 and model 2
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Model 23: Model (2) for category three storms

Figure 44: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category three only

Figure 45: Residuals for model 23 Figure 46: Normal probability plot for

model 23
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Predictions for hurricane Ivan Category 3:

Wind Model 23 Model 2

100 102.5 107.9

110 110.5 118.8

110 110.0 116.6

110 110.0 116.6

110 107.6 109.1

100 98.1 93.0

100 102.2 100.1

100 102.1 99.2

105 105.0 108.4

105 105.2 107.4

100 99.3 101.7

Table 5: Wind speed, predictions

for model 23 and model 2

Model 24: Model (2) for category four storms

Figure 47: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category four only
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Figure 48: Residuals for model 24 Figure 49: Normal probability plot for

model 24

Predictions for hurricane Ivan Category 4:

Wind Model 24 Model 2 Wind Model 24 Model 2

115 112.8 120.8 130 129.8 135.8

115 112.7 121.0 125 128.9 132.8

115 111.1 122.1 125 130.0 135.6

115 118.2 111.5 135 131.0 139.7

115 118.5 113.0 135 130.5 138.9

115 120.8 118.8 135 130.3 137.4

120 120.9 117.5 130 129.6 139.5

120 117.0 108.2 130 131.0 140.7

120 117.5 108.7 130 131.3 140.1

120 120.7 116.9 135 125.2 129.1

120 121.6 117.6 120 122.5 121.3

125 124.8 125.5 120 123.6 124.6

125 125.4 126.2 120 123.0 124.8

130 132.0 138.7 120 124.3 127.7

130 131.0 134.3 120 122.0 121.3

130 131.2 137.4 120 120.7 119.7

125 128.3 131.3 120 119.6 117.8

125 128.2 130.0 120 116.7 113.4

125 127.1 128.6 115 116.3 112.7

125 126.5 126.5 115 116.9 112.1

125 125.0 126.6 115 118.4 117.0

120 125.2 124.0 115 115.7 116.6

130 129.2 132.2 115 118.4 113.9

135 131.2 137.9 115 114.9 112.8

135 130.3 137.0 115 112.3 109.4

130 130.0 139.7 115 110.7 102.1

Table 6: Wind speed, predictions

for model 24 and model 2
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Model 25: Model (2) for category five storms

Figure 50: Multiple regression including significant linear

terms, a single quadratic term for pressure and significant

interaction for category five only

Figure 51: Residuals for model 25 Figure 52: Normal probability plot for

model 25
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Predictions for hurricane Ivan Category 5:

Wind Model 25 Model 2

140 137.6 133.7

140 139.7 138.6

140 142.7 143.1

140 142.6 142.4

140 140.9 138.7

145 141.1 141.3

145 143.1 143.3

145 142.3 143.6

145 143.5 145.1

140 142.1 140.0

140 140.5 136.2

140 141.2 138.0

140 139.7 135.2

140 141.5 139.6

140 141.4 140.7

140 140.5 141.1

140 140.2 138.6

140 140.7 140.3

140 137.8 132.5

140 140.0 132.4

Table 7: Wind speed, predictions

for model 25 and model 2

Comparison of model 2 predictions and the sub-models 2i predictions in union

First, consider the general model II (2) versus the wind speed; 97.1% of the

variation in the wind speed is explained by the least square regression of model (2) (as

shown in Figure 53) whereas 98.9% of the variation in the wind speed is explained by the

conditional model (2i) (shown in Figure57).
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Model (2) versus reported wind speed

Figure 53: Simple linear regression to compare predicted

values using model 2 to that of the actual wind speed

Figure 54: Scatter plot of predicted values

using model 2 and the recorded wind speed

Figure 55: Residuals for model 2
Figure 56: Normal probability plot for

model 2
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Model (2union) versus reported wind speed

Figure 57: Simple linear regression to compare predicted

values using model 2i in union to that of the actual wind

speed

Figure 58: Scatter plot of predicted

values using model 2i in union and the

recorded wind speed
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Figure 59: Residuals for model 2i in

union

Figure 60: Normal probability plot for

model 2i in union

Notice there is significantly less error in the scatter plot for the model formed

using the individually formulated using models 2i in union. However there is almost the

same error for tropical storms. Therefore our models are more reliable for predicting the

wind speeds of hurricane category storms and less reliable for category zero storms; that

is, this model is less reliable in predicting tropical storms and depressions. By

considering one model over all categories over a model generated by six individual

models for each category we loss 1.8% of the explanation.

Model 20w: Model (2) for category winds measured less than or equal to w

In analyzing the various categories, the question becomes when should we adjust

the coefficients in our model to better predict the wind speeds in an ever-changing

environment.

Consider the sequential model 2ij where i is the category of storm and j is the

maximum wind speed included in the model starting with tropical depressions.
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Minimum Wind Speed Maximum Wind Speed Category 2R
2
adjR

0 30 TD 74.5% 38.3%

0 35 TD,TS 61.6% 54.4%

0 40 TD,TS 57.6% 50.6%

0 45 TD,TS 52.0% 45.9%

0 50 TD,TS 60.4% 56.1%

35 45 TS 57.3% 41.3%

35 50 TS 60.5% 52.0%

35 55 1 71.5% 65.7%

35 60 1 78.7% 77.5%

35 65 1 81.1% 78.6%

35 70 TS,1 84.3% 82.5%

35 75 1 80.1% 77.9%

35 80 1 81.7% 79.8%

65 80 1 55.5% 31.9%

65 85 1,2 58.2% 47.8%

65 90 1,2 65.2% 60.4%

65 95 1,2 66.8% 62.4%

65 100 1,3 73.5% 70.8%

65 105 1,3 74.8% 72.6%

65 110 1,3 78.6% 77.0%

65 115 1,4 83.2% 82.1%

65 120 1,4 85.2% 84.4%

65 125 1,4 86.7% 86.1%

65 130 1,4 88.5% 88.0%

65 135 1,4 88.9% 88.5%

65 140 1,5 90.6% 90.3%

65 145 1,5 91.0% 90.7%

65 150 1,5 91.5% 91.3%
70 155 1,5 90.4% 90.1%

75 155 1,5 89.8% 89.4%

0 63 0 81.8% 79.8%

64 82 1 64.7% 38.8%

83 95 2 33.2% 14.8%

96 112 3 67.1% 56.7%

113 135 4 75.0% 72.4%

136 ----- 5 64.6% 54.0%

Table 9: Regression for various intervals of wind speeds
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Results and Interpretations (Discussion)

Statistically, with just a few prior pieces of information, we can estimate with

high degree of accuracy the associated wind speed; that is, our model explains 97.1% of

the variation in the in the wind speed. Some of the secondary result, estimating the

coefficients for the various categories may need to be re-evaluated since it has be shown

that the Saffir-Simpson scale does not categories hurricane force winds appropriately

according to significant changes in the pressure. Reclassification of the categories might

yield a better fitting model when regressed categorically. Furthermore, coupling physics

with statistics should produce a much more reliable model; however, categories aside, the

non-linear statistical model develop can still be used to more accurately estimate the

intensity of a storm.

Conclusion

With the present day technology and the historical data now readily available,

hurricane prediction will become more accurate in the near future. This model predicts

the intensity of the storm, now we need to address the issues of direction and duration

and how this relates to the intensity. The spaghetti string models, averaged and used to

make the cone shaped predictions and forecast as new information is gathered, can be

adjust to be more accurate or simply replaced my stochastic systems developed by

statisticians working with meteorologist.
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Appendix A: Celestial Rotations

Images by Nick Strobel, Bakersfield College, Physical Science Department, Bakersfield,

CA. Website: http://www.star.ucl.ac.uk/~idh/STROBEL/book.htm


