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ABSTRACT. In this study, the bivariate probability distributions of volcanic explosivity index
as well as the tephra fallout as measured at Cerro Negro are considered and the skewness of the
distribution is considered empirically and the non-skewed bivariate Gaussian probability distribution
is compared to the skewed Gaussian distribution.
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1. INTRODUCTION

In the present study the dispersion of ash fall from a volcanic event in two parts.

First, we consider the empirical probability of a given Volcanic Explosivity Index

(VEI); that is, the associated proportion of the volcanic eruptions at Cerro Negro

which are a given VEI: 1, 2 or 3; see [2].

Second, we will perform parametric inferential analysis on the mass of tephra

measured at 80 sites around where ash fall and was presented in [1] and [4]. If

there were no external forces other than gravity and all particles were perfect in

shape (round), we would expect the dispersion to be bivariate Gaussian (normal)

probability distribution to characterize the key variable, but with the rotation of the

earth and the resulting wind shear, the distribution is skewed; see [3]. Therefore,

four variations of the standard bivariate normal are being considered in the present

study. The fit of these probability distributions were compared using χ2 and R2 to

determine the best-fit probability distribution and percent of empirical distribution

explained by the statistical model when best characterizes the behavior of the subject

phenomenon.
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Establishing the probability distribution of the subject variable (mass in cubic

meters) enables us to estimate the amount of mass that is likely to land in a given

location. This is extremely important in urban development as well as for strategic

planning and risk analysis.

In our present study we will address the following questions:

1. Identify the volcano addressed and why.

2. What is the probable VEI in a volcanic event?

3. What is the probability distribution of tephra, combined and by grain size?

4. What is the best-fit bivariate probability distribution?

2. CERRO NEGRO, NICARAGUA

The volcano of interest in this study is Cerro Negro, Nicaragua. Located at 12.5◦N

and 86.7◦W, this volcano has an elevation of 2214 feet (675 meters) and a summit

of 2388 feet (728 meters). Since its birth in 1850, there have been approximately 24

eruptions; the last eruption was in 1999. At 155 years, this is the youngest of Central

America’s volcanoes in the Maribios volcanic chain.

There are many uncertain data from the dates of eruptions to the magnitude

of the eruptions. Searching Cerro Negro, Nicaragua, there are many sites, which

offer information on volcanoes. The Global Volcanism Program, maintained by the

Smithsonian Institution, has posted information on the duration of eruptions, the

volcano explosivity index (VEI), column height, the tephra fallout, the lava volume

and the source area, see Table 1. Additional information was gleaned from other

sources, see [2].

Table 1 gives the eruptions data for Cerro Negro including the year the volcanic

event occurred, the approximate duration of the event, the cumulative volume (cubic

meters), the approximate fall volume for the given event (cubic meters), the tephra

(cubic meters), lava volume (cubic meters), column height (meters) and area effect.

3. ANALYSIS OF VOLCANIC EXPLOSIVITY INDEX OF CERRO

NEGRO, NIGERIA

Consider the VEI for the volcanic eruptions at Cerro Negro, Nigeria. There are

several capricious data sources, see Figures 1 and 2. Figure 1 shows VEI of 0, 1 or 2

(Smithsonian), whereas Figure 2 shows VEI of 0, 1, 2, 2.5 and 3; see [1]. One source

has a VEI of zero when there is little appreciable tephra fallout, no column height and

little or no lava flow, while other sources have VEI of 1 for the same eruption. Such

as the eruption in 1995; one source states there was an eruption which lasted 79 days

but shows a VEI of 0, and for that same year an eruption which lasted only 13 days

and expelled a significant amount of volume with a VEI of 1. Whereas, according to
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the Smithsonian and historical data, the eruption that occurred in 1995 shows a VEI

of 2.

While the two sources, (Smithsonian) and [2], are different, they are highly cor-

related with an estimate of the correlation coefficient, R2 = 71.8%. Compare the

VEI from the two sources, see Table 2. The second source has several zeros whereas

the first source only has record of one or higher. That is, the first source states all

eruptions have an index of at least one. If we consider the proportions associated

with the various levels of VEI, we see that the second source indicates that 35% of

all eruptions are insignificant with a VEI of 0, and a VEI of 1 or 2 is equally likely

at 26%, but that a VEI of 3 is likely to occur 13% of the time. More realistically,

the first source indicates that a VEI of two is most likely at 61% of the eruptions,

whereas a VEI of three is the second most likely magnitude of eruption at 30% and

a VEI of one occurs the remaining 9% of the time. Note, both sources indicate that

there has never been an eruption with a VEI of four or five; this powerful eruption

has not occurred at Cerro Negro, yet.

Figure 1. Line graph of VEI over the

years (first source).

Figure 2. Line graph of VEI over the

years (second source).

Under the assumption, the first source is more realistic and we will proceed with

the analysis of the remaining variables; namely, the direction of the deposit, and the

thickness of the deposit.

4. TREND ANALYSIS

Consider the cumulative volumes in cubic meters of volcanic fallout. Throughout

time, volcanic eruptions of magnitude 3 are commonly followed by eruptions of mag-

nitude two or one. Let xi(t) = n (V EIi(t)) be the cumulative frequencies for each of

the three main magnitudes, i = 1, 2, 3, shown in Figure 3, are the overall cumulative

frequencies defined by n(t) =
3∑
i=1

xi(t). Then the probability of an eruption of a given

magnitude is

pi(t) =
xi(t)

n(t)
,

for i = 1, 2, 3 as illustrated in Figure 3.
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Figure 4 shows the convergence of the percentage of given VEI over time; that

is, approximately 9% of volcanic eruptions at Cerro Negro have VEI of 1, 61% of

volcanic eruptions at Cerro Negro have VEI of 2, and approximately 30% of volcanic

eruptions at Cerro Negro have VEI of 3.

Figure 3. Line graph of cumulative volume (m3) since the birth of

Cerro Negro.

Figure 4. Line graph of cumulative fre-

quencies.

Figure 5. Line graph of percentages

over time (probabilities).

We see that there are two large gaps in the line graphs given by Figures 4 and

5. The first gap appears between 1867 and 1899 (32 years), and the second gap

between 1971 and 1992 (21 years); but on the average, there is an eruption every 6.2

years. In addition, the first few eruptions after this twenty-plus year lull were one of

magnitude 3 and then two eruptions of magnitude 2 over a seven year period. In fact,

over half of the differences indicate an eruption every 3 years. However, there was

a time that this volcano lay dormant for three decades. This study will not address

the probability that there is an event in a given year, but the conditional hazard that

relates to the probabilities that a given event has a specified magnitude and where,

relative to the main vent of the volcano, the probability that the tephra will fall in a

specified direction.
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5. DIRECTION OF DEPOSITION: CONIC SECTIONS

Data collected at Cerro Negro by the University of South Florida’s Geology de-

partment, the mass of tephra by grain size that can be used to analyze the probability

distribution of tephra fallout. With the main vent of the volcano set as the origin,

consider the eight sections (45◦ each) enumerated counter-clockwise off true east.

These eight conical regions defined finding the angle off due east and then divided

into equal sectors

s = int

(
θ

45◦
+ 1

)
.

The majority of the tephra fallout is in the sixth sector as shown in Figure 6. As

given in Table ??, 63% of the mass falls to the south-southwest of the volcano. Also, all

mass falls south of the main vent and very little (11%) falls southeast. The differences

between the locations where the data is collected and where tephra falls should be

minimal; that is, the data is assumed to be gathered at random, (systematically

selected) to represent all locations where tephra falls. Figure 6 illustrates that the

probability distribution of the given data is not best characterized by the symmetric

bivariate normal probability distribution.

Figure 6. Scatter plot of Tephra Fallout by conical section.

Further refine this directional partition into twenty-four conical sectors shown by

Figure 7 where the cones defined finding the angle off due east and then divided into

equal sectors, s = int
(
θ

15◦
+ 1
)
. This refined partition shows that while 3.8% of the

samples are taken near the main vent of the volcano, 20.7% of the mass falls in this

direction. The more refined the sectors, the more normal the distribution appears as

shown in Table 4.

This analysis shows that the data is not Gaussian; the dispersion of the tephra

is not symmetrical with respect to the center of the main vent. This analysis also

shows that even if the standard (non-correlated) bivariate normal is assumed, the data
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Figure 7. Scatter plot of Tephra Fallout by conical section.

must either be rotated to a primary and secondary axis or use the general (correlated)

bivariate normal.

6. RADIAL ANALYSIS

Let the location of the main vent be the center of our volcanic eruption. Assuming

the converted latitude and longitude denoted in meters (northing and easting, Uni-

versal in a Transverse Mercator coordinate), and then we can compute the distance

from this center marker as well as the angle. That is, the distance

di =

√
(xi − xc)2 + (yi − yc)2

between (xi, yi) is the location of the ith sample and (xc, yc) is the location of the

main vent or center and the angle θi = tan−1
(
yi−yc

xi−xc

)
is off due east. Then we can

best analyze the distance and angle independently.

Consider the histogram of the distances sampled as shown by Figure 8 along

with the basic statistics that describe the data. More samples were taken closer to

the main vent, and fewer were taken more than 10, 000 meters from the main vent, but

all in all the number of samples are uniform. Percentages for distance (with thirty

contours) are given in Table 5, but more interesting, the mass measured at these

various distances illustrated by Figure 9. Also in the table that follows, in addition

to the distance contour, it shows the count, present by distance, sample mean of the

mass present and the percent of mass at each distance. The basic descriptive statistics

are also given by the accompanying table.

Furthermore, consider the distribution of the angle θi, samples appear to be

normally distributed as illustrated by Figure 10 with a mean of 194.5◦ off due east

with a standard deviation of 47.1◦; however, this is simply the sampling distribution.

However, as Figure 9 illustrates the distribution of mass is also centered about this
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Figure 8. Histogram of the estimated distance from the center (main

vent) including descriptive statistics.

Figure 9. Scatter plot of mass kg/m2 and distance from the center

(main vent).

angle as well. The basic descriptive statistics are also given by the accompanying

table.

Figure 10. Histogram of the estimated angles off the horizon includ-

ing descriptive statistics.
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Figure 11. Scatter plot of mass kg/m2 and angle off due east.

Further analysis of the mass by angle indicates that the distribution of the angle

of fallout is not normally distributed. The normal plot and box plot given by Figures

12 and 13, respectively, indicate that the data is more uniformly distributed near the

central angle determined by the rotation of the earth and the direction of the wind

near the main vent. All other directions are outliers as illustrated in the box plot

given by Figure 13, where an outlier is any point which falls further than three sample

standard deviations from the mean. These angles of trajectory would be uniformly

distributed over all 360◦. This is due to the fact that without the external forces (and

assuming perfectly spherical and uniform particle size) the dispersion of the ash fall

would be bivariate normal (Gaussian).

Figure 12. Normal probability plot

for direction of fallout.

Figure 13. Box plot for direction of

tephra fallout.

7. PARTICLE SIZE PROBABILITY DISTRIBUTION

These eruptions produced an ash-rich column extending 2 kilometers. Here we

see the smallest particles of ash falling away from the mushrooming column as well

as vibrator dust whereas the majority of the particles form a more liquidous buoyant

state. In general, Strombolian eruptions are characterized by the sporadic explosion

or spewing forth basaltic lava from a single vent or crater. Each event is caused by the

release of volcanic gases, and they typically occur periodically — sometimes with an



MATHEMATICAL AND STATISTICAL ANALYSIS OF TEPHRA FALLOUT 9

appearance pattern and others more randomly. The lava fragments generally consist

of partially molten volcanic bombs that become rounded as they fly through the air.

These particles were gathered and sifted into sixteen different particle sizes, φ,

φ = − log2 d where d is the particle diameter measured in millimeters. The ranges in

diameters are as listed in Table 6.

Consider when the mass is plotted first versus diameter as shown by Figure 14 and

then versus φ shown by Figure 15. Furthermore, consider the probability distribution

of the diameter and φ using mass as the frequency.

Figure 14. Scatter plot of mass

(kg/m2) by diameter d.

Figure 15. Scatter plot of mass

(kg/m2) by size φ = − log2 d.

Phi does demonstrate a more normal probability distribution, but does not com-

pensate for the distributions in the tail. The best-fit probability distribution is the

Log-Normal probability distribution, see Table 7 below; however, many volcanologists

use the normal probability distribution which will give misleading results.

Here the empirical distribution is computed by the mass of the various particle

sizes;

P (j = φ) =
M(j)∑

i∈Φ

M(i)
,

where Φ is the set of particle sizes defined by φ = − log2 d with d being the diameter

size of the particle in millimeters, d > 0. Note: there is loss of mass when converting

the percentage particle size at each given location back to comparable mass unit. The

manipulated data is accurate up to ±2% of the actual recorded percent mass.

The normal (Gaussian) probability distribution of the size phi is given by

fΦ(φ) =
1

σφ
√

2π
exp

(
−(φ− µφ)2

2σ2
φ

)
, (7.1)

where µφ is the expected value (true mean) of the size φ and σφ is the associated

standard deviation, where the recorded mass is the frequency. It may be necessary

to include a separate weighing system to break the mass into frequency or count of

number of particles of a given size in a given mass. To consider this interpretation —

given the number of particles, the probability that a given particle is of a given size
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— would require estimations on the mass of particles of a given diameter size. Here

we have the cumulative probability distribution of φ given by

FΦ(φ) = 1− exp

{
−(φ− µφ)2

2σ2
φ

}
,

and that of d given by

FD(d) = P {D ≤ d} = P {lnD < ln d}

= P {Φ < ln d} = FΦ(ln d)

= 1− exp

{
−(ln d− µφ)2

2σ2
φ

}
.

We can simplify this cumulative probability distribution if d is given by

FD(d) =
1

dσ2
φ

exp

{
−(ln d− µφ)2

2σ2
φ

}
. (7.2)

Furthermore, note that we can write

fD(d) =
fΦ(ln d)

d
,

which is the probability distribution function of the mass by particle size as measured

by the diameter of tephra.

8. STATISTICAL MODELING OF TEPHRA FALLOUT

Consider the three variables — mass, distance and angle — associated with tephra

fallout. Let the mass of the tephra at a given location be denoted by m, then we can

consider the linear statistical model given by

m = β0 + β1d+ β2θ + ε, (8.1)

where the βi’s are the weights that drive the estimate of the subject response and ε

is the random error.

Statistically, we find that only the distance away from the main vent is significant

as contributing variables with p-value < 0.0001 explaining 36.5% of the variation in

the amount of mass recorded at a given location. The direction in which the mass of

tephra found is dependent on the wind, but does not significantly contribute to the

dispersion of the mass. Thus, an acceptable estimate of the statistical model given

by equation (7.2) is,

m̂ = 810.368− 0.0613542d. (8.2)

That is, the response variable only depends on distance from main vent. Also, turning

these roles around, consider the distances of the mass by particle size mφi
is given by
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d = β0 +
16∑
i=1

βimφi
+ ε, (8.3)

where the βi’s are the weights that drive the estimate of the subject response and ε

is the random error.

The developed statistical model explains 52.7% of the variation in the distance,

but no one particle size was found to be significant. This model is important when

considering that most advection equations assume that the location where tephra is

expected to fall depends on particle size. However, the present study shows that the

location, at least in terms of distance, does not depend on particle size.

Bivariate Distribution. Consider the mass m over the northing distance y and

easting distance x shown by Figure 16. We see that the majority of the mass falls near

the main vent and depends on the direction the wind is blown from the volcano. This

wind direction can be measured. Then the major and minor axis can be rotated from

the north and east points at the required angle, after which a simple non-correlated

bivariate Normal distribution can be used; however, there are many contributing

factors and the wind is not the only determining factor.

Figure 16. Scatter plot of mass (kg/m2).

Consider the standard correlated bivariate normal probability distribution given

by

f(x, y|µx, σx, µy, σy, ρxy) = K exp

{
1

−2(1 + ρ2
xy)

[
z2
x − 2ρxyzxzy + z2

y

]}
,

where

zx =
x− µx
σx

, zy =
x− µy
σy

, ρxy ∈ (−1, 1)

and

K =
1

2πσxσy
√

1− ρ2
xy

, for −∞ < x <∞, −∞ < y <∞.
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Notice the function estimates given by the above probability distribution are on

a different scale. This is simply due to the fact that the true empirical probability is

P (x, y) =
γm(x, y)∑

Ωm(x, y)
,

where γ is the percent of the mass collected; that is, if the total fallout mass expelled

by the volcano is m and

γ =

∑
Ω m(x, y)

m
is the percent of the total mass measured in the sample.

However, even with different scales, we see as shown by Figure 17(A), the distri-

bution of the data collected is skewed toward the volcano’s main vent; whereas, as

shown by Figures 17(B) and 17(C), the non-correlated and the correlated bivariate

Gaussian are symmetrical.

(a) Empirical (b) ρxy = 0.0 (c) ρxy = 0.504 (depen-
dent)

Figure 17. Empirical probability distribution for the northern and eastern coordi-

nates.

When comparing the empirical probability distribution with that of the general

non-correlated bivariate Gaussian probability distribution and the correlated bivariate

Gaussian probability distributions, neither account for the skewness of the data’s

distribution toward the volcano’s main vent. Compare the contour plots for the non-

correlated bivariate Gaussian probability distribution and the correlated bivariate

Gaussian probability distribution as shown by Figures 18(A) and 18(B), respectively.

(a) ρxy = 0.0 (b) ρxy = 0.53

Figure 18. Non-correlated and correlated bivariate Gaussian distribution.
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In the non-correlated bivariate, the wind shear effect is not present; assuming

that the directions are independent. A common practice to compensate for this is to

use the initially defined advection diffusion equations under the assumption that each

layer in the atmosphere moves collectively and falls in normally distributed piles when

considered by grain size. That is, the assumption is that the fallout is symmetrical

to a center point and not skewed toward the main vent. This “kernel”-like approach

need not directly account for the wind shear, but moreover does not account for the

skewness of the fallout toward the main vent of the volcano.

Furthermore, while the correlated bivariate Gaussian does address the issue of

orientation without any intermediate transformations, it does not address the skew-

ness of the data toward the main vent as illustrated by Figure 19(A). Therefore, either

we need to sift (profile) the data according to particle size in an attempt to justify the

general bivariate Gaussian probability distribution function or test the goodness-of-fit

of a skewed probability distribution such as some form continued within the gener-

alized extreme value distribution (GEVD); (the Weibull, the Gumbel, the Frechet or

the Pareto) or the skewed Normal distribution.

Furthermore, the categorization of the tephra fallout by particle size defined by

φ = − ln(d), where d is the diameter of the tephra, is normalized by the scale and

homogenized by the variance. For the majority of the particle sizes, the distribution is

skewed toward the main vent of the volcano, but as the particle’s size becomes smaller,

indicated by the large values of φ, the distribution loses its center of concentration

and becomes more variegated. Therefore, it is possible for the larger particle sizes

to be combined and characterized by the same parametric distribution, whereas non-

parametric techniques may need to be used for the smaller particle size.
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(a) φ −4 (b) φ −3.5 (c) φ −3

(d) φ −2.5 (e) φ −2.0 (f) φ −1.5

(g) phi −1.0 (h) φ −0.5 (i) φ 0.0

(j) φ 0.5 (k) φ 1.0 (l) φ 1.5

(m) φ 2.0 (n) φ 2.5 (o) φ 3.0

Figure 19. Tephra fallout by particle size.

The general empirical distributions for the majority of the larger particle sizes are

very similar in skewness and dispersion to the distribution of the combined informa-

tion. The smaller particle size, the more uniform the distribution, yet the dispersed

is in the same general region as the large particle sizes. Hence, the overall correlated

bivariate probability distribution can be applied to the total mass and not by par-

ticle size to approximate the best probabilistic behavior of the subject phenomenon

(location of fallout) using one of the three forms of the bivariate normal distribution:
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the rotated non-correlated normal probability distribution, the non-rotated correlated

normal probability distribution and the rotated (independent) skew normal probabil-

ity distribution.

For the data gathered at Cerro Negro, the correlation coefficient between the

northing and easting distances is ρ̂xy = 0.508 using data location in listed form and

the estimate of the correlation coefficient ρ̂xy = 0.5378, using the associated mass as

weights.

The sample mean north coordinate is µ̂x = 525944 (µ̂x = 527329) and sample

mean east coordinate is µ̂y = 1380440 (µ̂y = 1380896), with sample standard de-

viations of σ̂x = 3222 (σ̂x = 2751.3) and σ̂y = 1720 (σ̂y = 1416.5). Compare the

north-south and the east-west cross-section of the empirical data versus the corre-

lated bivariate normal distribution as shown by Figures 20–23; these figures illustrate

that there the standard bivariate normal is not the best-fit distribution. There is

skewness in the data which is not simulated by a symmetric normal bivariate distri-

bution. This appears as a lean in the data as illustrated by Figure 20. However, the

empirical probability distribution shown in Figure 22 is better characterized by the

normal probability distribution shown in Figure 23.

Figure 20. Scatter plot for the empir-

ical probability distribution and distance

north.

Figure 21. Scatter plot for the correlated

bivariate normal distribution and distance

north.

Figure 22. Scatter plot for the empiri-

cal probability distribution and distance

east.

Figure 23. Scatter plot for the corre-

lated bivariate normal distribution and

distance east.
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Furthermore, consider the three-dimensional plot of the empirical probability

distribution and the correlated bivariate normal distribution with respect to the map

of distance north by distance east shown by Figures 20 and 21, respectively. This

further illustrates the contour plots shown by Figures 22 and 23, respectively. In

these contour plots, the lines represent µx (true horizontal mean) and µy (true vertical

mean) and the main vent is indicated by the dashed line.

Figure 24. Three-dimensional scatter plot of the empirical probability distribution

over the underlying distance north and distance east.

Figure 25. Three-dimensional scatter plot of the correlated bivariate normal distri-

bution over the underlying distance north and distance east.
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Figure 26. Three-dimensional scatter plot of the empirical probability distribution

over the underlying distance north and distance east.

Figure 27. Three-dimensional scatter plot of the correlated bivariate normal distri-

bution over the underlying distance north and distance east.

Comparison of Four Forms of the Bivariate Normal Probability Distri-

bution. Recall that we defined the distance di =
√

(xi − xc)2 + (yi − yc)2 between

(xi, yi) is the location of the ith sample and (xc, yc) is the location of the main vent

or center and the angle θi = tan−1
(
yi−yc

xi−xc

)
, off due east. We can therefore transform

the northern and eastern directions into a centralized Cartesian plane by considering

the transformed data xi := xi − xc and yi := yi − yc. Then in cis notation, we have

ri =
√
x2
i + y2

i = di which corresponding radians are given by θi. To rotate this data

to a primary and secondary axis where there is minimum or no correlation, we can

rotate the data by a given angle α by defining x′i = ri cos(θi+α) and y′i = ri sin(θi+α).

We can estimate the necessary value of α by considering the regressed slope between

x′ and y′ set equal to zero. Accurate to the first decimal we have α̂ = 18.8◦ which

shows an associated slope of m = 0.000357 and simple correlation of r = 0.000801.

Scatter plots of these two coordinate systems are as shown by Figures and .
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Figure 28. Scatter plot of original

data.

Figure 29. Scatter plot of the rotated

data.

However, even with this rotation the mass is skewed and the majority of the

tephra fall more in one direction than in any other, namely the direction in which the

wind is blowing.

To compare these statistical models to the empirical distribution, consider the

unitized probability distribution. Recall, the sample sets consist of

Ω = {(xi, yi) : i = 1, 2, . . . , 80} and the empirical probability at the given location is

defined in terms of the mass at that location pi = P (xi, yi) =
M (xi, yi)∑

(x,y)∈Ω

M(x, y)
. Then,

we can compute the best-fit correlated bivariate normal probability distribution for

the transformed data f (xi, yi) at the various locations for which we have data and

then define the associated probability as f̂ (xi, yi) =
f (xi, yi)∑

(x,y)∈Ω

f (xi, yi)
. Similarly, we can

compute the best-fit non-correlated bivariate normal distribution for the transformed

and rotated data g (x′i, y
′
i) as defined by ĝ (x′i, y

′
i) =

g (x′i, y
′
i)∑

(x,y)∈Ω

g (x′i, y
′
i)

. Then we can

determine which distribution yields the best-fit.

Since x′ and y′ are independent, then fΩ′ (x
′, y′) = fX′ (x

′) fY ′ (y
′), where Ω′ =

{(x′, y′) | (x, y) ∈ Ω}, X ′ = {x′ | x ∈ X} and Y ′ = {y′ | y ∈ Y }. In this rotated co-

ordinate system, the distribution of the minor axis is normally distributed; that is,

y′ ∼ N
(
µy′ , σ

2
y′

)
. However, the distribution of the major axis is skewed; that is the

variable x′ is better described by the skewed distribution given by equation 6 where

g(x) is the standard normal probability distribution function with parameters µx′ and

σ2
x′ . The skewed probability distribution function is given by

fX′ (x
′) = 2g (x′)G (λx′) , (8.4)

where G is the cumulative normal probability distribution function, λ is the skewing

factor and x′ is the rotated coordinate defined above.

Thus, we have four probability distributions to consider: the transformed non-

correlated bivariate normal (TNCN), the transformed correlated bivariate normal

(TCN), the transformed rotated non-correlated bivariate distribution (TRNCN) and
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finally, the (independent) skewed transformed rotated non-correlated bivariate normal

(STRNCN).

To determine which of the four probability distributions best-fits the data, we

proceed to determine which of the four probability distribution minimizes the measure

of χ2 =
∑

i

(f (xi, yi)− pi)2

pi
and χ2

adj =
∑

i

(
f̂ (xi, yi)− pi

)2

pi
. We can improve the

fit of the distribution by letting λ̂ = 5.23; this skewness yields a significant decrease

in the χ2. According to this statistic, the transformed correlated bivariate normal

is the best-fit. Let χ2
0 represent the minimum measured χ2. Then the larger such

statistics are given as a multiple of this minimum statistic, see Table 8. Furthermore,

with the adjusted statistics, χ2
adj we have that the first two probability distributions

(statistical models), the TNCN and the TCN are very similar, but the STRNCN

shows a vast improvement over all the remaining statistical models. Therefore, we can

also consider the correlation between pi and fi for the given probability distribution

function, respectively. We compare these probability estimates given by Figures –.

This again indicates that the STRNCN explains more variation in the empirical

probability distribution than the other statistical models with R2 = 39.3%; however,

when we consider the simple correlation between pi and f̂i for the given probability

distribution function, respectively — the TRNCN is the most explanatory. Note:

all data is considered in its transposed form with graph given by Figures – in the

coordinate system (x, y).

Figures 30–33, are on different scales; where the empirical probability in Figure

30 sum to one, the estimated probabilities in Figures 34 are based on the bivariate

distribution, which is only a small portion of the total probability as stated previously.

Figure 30. Contour plot of empirical

probability distribution.

Figure 31. Contour plot for the esti-

mated non-correlated bivariate normal

distribution.
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Figure 32. Contour plot for the esti-

mated correlated bivariate normal dis-

tribution.

Figure 33. Contour plot for the es-

timated rotated non-correlated bivari-

ate normal distribution.

Figure 34. Contour plot for the estimated rotated non-correlated skewed bivariate

normal distribution (assuming independence).

9. USEFULNESS

This type of analysis is extremely important on both a global scale as well as

on a local scale. Global impacts are not just the possibility of ash in the area, but

also the placement of such things as nuclear power plants and biohazard facilities.

On a local scale, there is urban planning for economic growth and, more importantly,

evacuation planning in case of a volcanic eruption. Unfortunately, this is not an exact

science. In 2001, volcanologists stated with 95% confidence, that Cerro Negro would

erupt again before 2005, but this has not yet come into fruition and it is over a year

past this forecast [2]. Does this mean we are over due, and how does this additional

time affect the probable magnitude (VEI) of the next volcanic eruption? Consider

the trend over time.

10. CONCLUSION

The volcano data analyzed in this study was obtained from Cerro Negro, Nicaragua.

We have 80 sample sites from which the tephra was measured in terms of mass and
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sieved down into mass by particle size. The most probable VEI for Cerro Negro is 2.

In terms of grain size, the probability distributions are the same for larger particle

size; the skewed bivariate normal. Whereas the smaller the particle size the more

uniform the distribution. The majority of the particles, however, are large enough to

consider these masses combined.

To determine the bivariate probability distribution which best characterizes the

subject response (location of ash fall), four probability distributions are tested for

goodness-of-fit: the transformed non-correlated bivariate normal probability distri-

bution (TNCN), the transformed correlated bivariate normal probability (TCN), the

transformed rotated non-correlated bivariate normal probability distribution (TRNCN)

and finally, the (independent) skewed transformed rotated non-correlated bivari-

ate normal probability distribution (STRNCN). While with both the rotated non-

correlated bivariate normal probability distribution and the correlated bivariate nor-

mal probability distribution, the fit is extremely tight, when measuring the goodness-

of-fit using the chi-square statistics, χ2 indicates that the correlated bivariate normal

probability distribution best characterizes the distribution of tephra. However, R2 in-

dicates that the distribution fit to the data by first rotating the data to a primary axis

and the non-correlated bivariate normal probability distribution used. Thus, neither

of these probability distributions accounts for the skewness in the data. According

the third way to determine the best-fit, χ2
adj indicates that the skewed transposed

(transformed by center to the main vent of the volcano), rotated (based on removing

the correlation between northern and eastern direction) non-corrected (made to be

independent) bivariate normal probability distribution best characterizes the behav-

ior of the subject phenomenon. The TCN explains an estimated 35.2% to 54.6% of

the variation in the empirical distribution; these values correspond to the correlation

coefficient R2, first between fi and pi, and second between f̂i and pi. The TRNCN

explains an estimated 17% to 58.9% of the variation in the empirical distribution and

the STRNCN explains an estimated 39.3% to 45.1% of the variation in the empirical

distribution.

Knowing the bivariate probability distribution which best characterizes the be-

havior of the subject phenomenon (location of ash fall) is extremely important to

urban planning, strategic planning and risk analysis.
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Table 1. Eruption data for Cerro Negro.

Year Duration VEI

Cum. (T)

Volume

m3

Fall

Volume

m3

Tephra

Volume

m3

Lava

Volume

m3

Column

Height

m

Area

1850 10 to 44 1 to 2 6.0E+06 4.3E+05 6.5E+05 5.4E+06 Form.

1867 16 2 1.0E+07 7.4E+06 8.6E+06 3.0E+03 NE/SW

1899 7 to 8 1 to 2 1.1E+07 1.7E+06

1914 6 to 6 2 1.2E+07 2.8E+06 2.8E+06

1919 10 0 to 2 1.2E+07

1923 49 2 to 3 3.9E+07 1.7E+07 3.6E+07 1.0E+07 2.0E+03
Summit

N R

1929 19 0 to 2 3.9E+07 1.0E+05

1947 13 to 24 3 to 3 5.1E+07 2.3E+07 3.1E+07 3.8E+06 6.0E+03
Summit

N F

1948 1 0 to 2 5.1E+07

1949 1 0 to 2 5.1E+07

1950 26 2 to 3 6.8E+07 2.8E+06 3.8E+07 1.0E+05 1.5E+04

1954 1 0 to 2 6.8E+07

1957 20 2 7.4E+07 2.8E+06 2.8E+06 4.5E+06 2.0E+03
Summit

E F

1960 89 1 to 3 9.5E+07 1.1E+06 3.4E+07 5.2E+06 1.0E+03
Summit

S F

1961 1 0 to 2 9.5E+07
NE

Flank

1962 2 1 9.6E+07

1963 1 0 to 1 9.6E+07

1964 0 2 9.6E+07

1968 48 2 to 3 1.2E+08 9.7E+06 2.7E+07 6.9E+06 2.0E+03
Summit

S F

1969 10 0 to 1 1.2E+08

1971 10.6 to 11 3 1.4E+08 3.0E+07 5.8E+07 5.0E+03
Summit

E F

1992 3.6 to 5 3 1.5E+08 2.3E+07 2.6E+07 5.0E+03

1995 79 to 191 1 to 2 1.5E+08 5.8E+06 3.7E+06 2.3E+03

1995 13 to 15 2 1.6E+08 2.8E+06

1999 2 to 3 1 to 2 1.6E+08 8.4E+05 1.0E+06 6.0E+05 1.0E+03 S. Flank
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Table 2. Frequencies and proportions for the two data sources.

VEI Frequency (1) Frequency (2) Probability (1) Probability (2)

0 0 8 0% 35%

1 2 6 9% 26%

2 14 6 61% 26%

3 7 3 30% 13%

4 0 0 0% 0%

5 0 0 0% 0%

Table 3. Data by direction (eight sectors).

Sector Freq. Probability

1 0 0%

2 2 3%

3 5 6%

4 14 18%

5 49 63%

6 2 3%

7 4 5%

8 2 3%
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Table 4. Data by direction (twenty-four sectors).

Sector Count Probability Cone Mean Mass Probability Mass in Cone

4 1 1.282 850.883 12%

6 1 1.282 753.294 11%

7 1 1.282 373.504 5%

8 2 2.564 267.685 4%

9 2 2.564 601.575 9%

10 3 3.846 568.754 8%

11 1 1.282 441.885 6%

12 10 12.821 362.741 5%

13 18 23.077 303.451 4%

14 21 26.923 394.468 6%

15 10 12.821 354.771 5%

16 1 1.282 215.712 3%

18 1 1.282 246.921 3%

19 1 1.282 343.031 5%

20 2 2.564 604.44 9%

21 1 1.282 97.82 1%

23 2 2.564 294.861 4%
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Table 5. Mass by distance.

Distance

Contour
Frequency

Relative

Frequency
Total Mass

Percent Mass

by Distance

1 1 1.266 1872.39 6%

2 1 1.266 620.231 2%

3 4 5.063 3214.428 10%

4 2 2.532 1098.318 4%

5 8 10.127 4914.92 16%

6 4 5.063 1838.584 6%

7 2 2.532 1755.53 6%

8 2 2.532 953.39 3%

9 4 5.063 1654.296 5%

10 3 3.797 1598.424 5%

11 1 1.266 329.566 1%

12 5 6.329 2241.005 7%

13 4 5.063 1307.428 4%

14 2 2.532 753.998 2%

15 1 1.266 225.219 1%

16 3 3.797 793.821 3%

17 4 5.063 1136.98 4%

18 2 2.532 540.326 2%

19 4 5.063 792.1 3%

20 1 1.266 238.067 1%

21 2 2.532 538.862 2%

22 3 3.797 420.882 1%

23 5 6.329 913.04 3%

24 1 1.266 142.721 0%

25 2 2.532 184.05 1%

26 4 5.063 848.004 3%

27 2 2.532 281.058 1%

28 1 1.266 89.403 0%

30 1 1.266 62.848 0%
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Table 6. Mass by diameter and size.

Diameter

d mm

Size

φ = − log2 d

Mass
kg/km2

Diameter

d mm

Size

φ = − log2 d

Mass
kg/km2

16.00 -4 325.4 1.00 0 4792.37

11.31 -3.5 264.48 0.71 0.5 4370.21

8.00 -3 572.21 0.50 1 2621.48

5.66 -2.5 1079.65 0.35 1.5 1463.36

4.00 -2 1662.49 0.25 2 777.45

2.83 -1.5 2955.97 0.18 2.5 428.41

2.00 -1 3921 0.13 3 276.76

1.41 -0.5 4905.6 <0.09 >3 872.66

Table 7. Test for best-fit distribution.

Test: Diameter (Phi) Normal Lognormal Exponential Weibull

Kolmogorov–Smirnov < 0.010 < 0.001 < 0.001 < 0.010 (< 0.001)

Cramer Von Miser < 0.005 < 0.001 <0.001 < 0.005 (< 0.001)

Anderson Darling < 0.005 < 0.001 < 0.001 < 0.005 (< 0.001)

Table 8. Descriptive statistics and regressed slope and correlation coefficient.

Statistic (x, y) TNCN TCN

µ −2964.3 −637.82 −2964.29 −637.82

σ2 2751.46 1416.3 2751.46 1416.27

ρ 0 0.5378

R2 28.90% (52.9%) 35.20% (54.6%)

χ2 1.3χ2
0 χ2

0

χ2
adj 0.413 0.422

Statistic (x′, y′) TRNCN STRNCN

µ -3196.3 396.23 -3196.34 396.23

σ2 2760.22 1137.5 2760.22 1137.48

ρ 0.000 0.000

R2 17% (58.9%) 39.30% (45.1%)

χ2 11.9χ2
0 16.2χ2

0

χ2
adj 0.607 0.265


