
1 

 

Lattice Designs in Standard and Simple Implicit Multi-linear Regression 

 

Rebecca D. Wooten 

Department of Mathematics and Statistics, University of South Florida, Tampa 33620 

 

Abstract: Statisticians generally use ordinary least squares to minimize the random error in a 

subject response with respect to independent explanatory variable. However, 

Wooten shows illustrates how ordinary least squares can be used to minimize the 

random error in the system without defining a subject response. Using lattice design 

Wooten shows that non-response analysis is a superior alternative rotation of the 

pyramidal relationship between random variables and parameter estimates in multi-

linear regression. Non-Response Analysis for simple linear co-linearity and 

Rotational Analysis in Simple Linear Regression challenge the notion of fixed 

effects; unity is included as a random measure (variable). The illustrations using 

lattice designs a mean operator that generates the standard mean and the self-

weighing mean, among other point estimates with random weights; and a join that 

illustrates variance and covariance; and develops the measures of variance 

referred to as internal co-variance and base variance. These concepts are used to 

illustrate how these measures are used to evaluate parameter estimates in standard 

simple linear regression and simple implicit regression (non-response and 

rotational). The resulting analysis of these lattice designs show standard simple 

linear regression limits the relationship by consider the variance in one direction 

as relating to the two adjacent co-variances (standard and internal) whereas non-

response analysis defines the relationship in terms of the internal co-variances 

and the base variance. 

  

Keywords: Regression Analysis, Weighted Means, Kramer’s Rule, Operators, Measures of 

Variance 

 

1. Introduction to Simple Linear Regression in Rotation and Non-response Analysis 

 

Lattice Design I & II will be used to address the solutions to the standard univariate model 

𝑦 = 𝛽 
and the non-response model 

1 = 𝛼𝑦, 

where 𝛼 =
1

𝛽
; and the simple linear regression model in standard form 

𝑦 = 𝛽0 + 𝛽1𝑥, 
the rotation of variables to 

𝑥 = 𝛾0 + 𝛾1𝑦 
and the non-response model 

1 = 𝛼1𝑥 + 𝛼2𝑦. 
 

The measures associated with these systems include two variables and unity (1); that is, the 

general form of these equations require two variables {𝑥, 𝑦} with constant coefficients and a 

constant coefficient without movement, {1}. 
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Using these three measures, {1, 𝑥, 𝑦}, the solutions to these equations can be illustrated using lattice 

designs; first relating the measures in Lattice Design I and then for a set of data in Lattice Design 

II. 

 

2. Introduction to Lattice Design I & II and the Mean Operator 

 

Consider Lattice Design I for three measures (unity and two variables): {1, 𝑥, 𝑦} where 𝑥 and 𝑦 

are positive measures. To construct this lattice design, starting with unity in the base level, 

Figure 1; moving down the lattice by multiply by 𝑥 if you veer to the left and multiply by 𝑦 if 

you veer to the right to create the levels of the lattice. 

 

Base level       1 

 

 

 

Level one 

          𝑥    𝑦 
 

 

Level two 

 

    𝑥2     𝑥𝑦         𝑦2 

Figure 1:  Lattice Design I depicting random variables x and y through level two. 

 

The above lattice represents a single observation. To extend this to a number of observations, let 

the product operator be defined as  

∏(𝑎, 𝑏) = 𝑎 × 𝑏 

 and the additive operator be defined by  

∑(𝑎) = ∑𝑎𝑖

𝑛

𝑖=1

; 

then we can defined the vertices in the lattice space to be 

𝑉(𝑎, 𝑏) = ∑∏(𝑎, 𝑏). 

   

Over a set of data, {𝑥𝑖}, this creates Lattice Design II: the base level 𝑉(1,1) = 𝑛 is the sample 

without variables; the first level or the first order variables: 𝑉(1, 𝑥) = ∑𝑥 and 𝑉(1, 𝑦) = ∑𝑦; and 

finally the second level with second order terms: 𝑉(𝑥, 𝑥) = ∑𝑥2 , 𝑉(𝑥, 𝑦) = ∑𝑥𝑦 and 𝑉(𝑦, 𝑦) =
∑𝑦2.  
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Graphically, this lattice has three levels and six vertices, Figure 2. 

 

Base level        𝑛 

 

 

 

Level one 

          ∑𝑥    ∑𝑦 
 

 

Level two 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

 

Figure 2:  Lattice Design II depicting a random set of measures 𝑥𝑖 and 𝑦𝑖 through level two. 

  

 

The means operation in the direction 𝑑 from the specified vertex 𝑊 = 𝑉(𝑎, 𝑏) is  

�̂�𝑑 = 𝑀𝐴𝑑 =
∑𝑎𝑏𝑑

∑𝑎𝑏
=

∑𝑊𝑑

∑𝑊
. 

 

Steps in computing the means operator: 

 Step 1:  Select a starting vertex (weights to be used) 

 Step 2:  Designate a direction (variable to be estimated) 

 Step 3:  Use the mean operator to estimate the central tendency of the variable 

 

Level-one means are the standard means: �̅� and �̅� with �̅� given by 

�̂�𝑥 =
∑1 × 𝑥

∑1
=

∑𝑥

𝑛
= �̅� 

as shown in red, Figure 3. 

 

 

𝑛 = 𝑉(1,1) 

 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

 

Figure 3:  Lattice Design II depicting connects made in computing the standard mean. 
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Level-two means in the same direction are the non-response means:  

�̂�𝑥 =
∑𝑥 × 𝑥

∑𝑥
=

∑𝑥2

∑𝑥
= �̂� 

the self-weighting mean as shown in the illustration below. 

 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

 

Figure 4:  Lattice Design II depicting connects made in computing the self-weighting mean. 

 

 

However, using this construct, Figure 5, estimates of 𝜇𝑥 include randomly weighted means using 

the measures of 𝑦 as the weights: 

�̂�𝑥 =
∑𝑥 × 𝑦

∑𝑦
=

∑𝑥𝑦

∑𝑦
 

 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

 

Figure 5:  Lattice Design II depicting connects made in computing a randomly weighted 

mean. 

 

When 𝑥 is a normally distributed random variable, any random set of weights will give a 

comparable measure and for low variance, converge to the standard mean as 𝜇𝑥 → ∞ irrespective 

of the sample size n. 
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3. Joins and measures of Variance 
 

Let the product operator be defined as ∏(𝑎, 𝑏) = 𝑎 × 𝑏 and the additive operator be defined 

by ∑(𝑎) = ∑ 𝑎𝑖
𝑛
𝑖=1 ; then we can defined the vertices in a lattice space to be 𝑉(𝑎, 𝑏) = ∑∏(𝑎, 𝑏) 

and the join between two vertices in two-dimensional space to be  

𝑊𝑎𝑏𝑐𝑑 = ∏[𝑉(𝑎, 𝑏), 𝑉(𝑐, 𝑑)], 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ {1, 𝑥, 𝑦}.  
 

Then the determinates then take the form of  

∆𝑎𝑏𝑐𝑑= 𝑊𝑎𝑏𝑐𝑑 − 𝑊𝑎𝑑𝑐𝑏 . 
 

Steps in computing the join: 

 Step 1:  Select two vertices with at least two edges between them 

 Step 2:  Designate a direction (variable to be estimated) 

 Step 3:  Use the mean operator to estimate the central tendency of the variable 

 

Lattice Design II also generates variances, covariance and other measures of deviations by taking 

the produce of the endpoints and subtracting the middle term squared or subtracting the product of 

the terms perpendicular to the center. 

 

The first variance, 𝜎𝑥
2, is measured in one direction, Figure 6, is centered around 𝑥 or ∑𝑥 and is 

considered a level one measure of variance: 

∆11𝑥𝑥= 𝑊[(1,1), (𝑥, 𝑥)] − 𝑊[(1, 𝑥), (1, 𝑥)] = 𝑛 ∑𝑥2 − (∑𝑥)
2

= 𝑛2𝜎𝑥
2 = 𝑛2𝜎11𝑥𝑥

2  

 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦      ∑𝑦2 

Figure 6:  Lattice Design II depicting connections made in computing the variance of 𝑥. 

 

  



6 

 

The second variance, 𝜎𝑦
2, is measured in one direction, Figure 7, is centered around 𝑦 or ∑𝑦 and 

is considered a level one measure of variance: 

∆11𝑦𝑦= 𝑊[(1.1), (𝑦, 𝑦)] − 𝑊[(1, 𝑦), (1, 𝑦)] = 𝑛 ∑𝑦2 − (∑𝑦)
2

= 𝑛2𝜎𝑦
2 = 𝑛2𝜎11𝑦𝑦

2  

 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

Figure 7:  Lattice Design II depicting connections made in computing the variance of 𝑦. 

 

 

The third variance is referred to a covariance, 𝜎𝑥𝑦, is measured between the two directions, 

Figure 8, is centered between ∑𝑥 and ∑𝑦 and is considered a level one measure of variance: 

 

∆11𝑥𝑦= 𝑊[(1.1), (𝑥, 𝑦)] − 𝑊[(1, 𝑥), (1, 𝑦)] = 𝑛 ∑𝑥𝑦 − ∑𝑥 ∑𝑦 = 𝑛2𝜎𝑥𝑦 = 𝑛2𝜎11𝑥𝑦
2  

 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

Figure 8:  Lattice Design II depicting connections made in computing the co-variance. 
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Additional determinates used in standard regression include the following internal 

covariance(s), Figure 9. 

∆1𝑦𝑥𝑥= 𝑊[(1. 𝑦), (𝑥, 𝑥)] − 𝑊[(1, 𝑥), (𝑥, 𝑦)] = ∑𝑦 ∑𝑥2 − ∑ 𝑥 ∑𝑥𝑦 = 𝑛2𝜎1𝑦𝑥𝑥
2  

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

Fig. 9(a)  

∆1𝑥𝑦𝑦= 𝑊[(1. 𝑥), (𝑦, 𝑦)] − 𝑊[(1, 𝑦), (𝑦, 𝑥)] = ∑𝑥 ∑𝑦2 − ∑ 𝑦 ∑𝑥𝑦 = 𝑛2𝜎1𝑥𝑦𝑦
2  

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑ 𝑥𝑦     ∑𝑦2 

Fig. 9(b) 

∆1𝑦𝑥1= 𝑊[(1. 𝑦), (𝑥, 1)] − 𝑊[(1,1), (𝑥, 𝑦)] = ∑𝑥 ∑𝑦 − 𝑛 ∑ 𝑥𝑦 = −∆11𝑥𝑦 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦     ∑𝑦2 

Fig. 9(c) 

Figure 9:  Lattice Design II depicting connections made in computing the internal co-

variances. 
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TheType equation here. determinates are used in standard regression are as follows: 

1xyy   1yxx   11xx  

1yx1    11yy  

 

For the standard regression model 

𝑦 = 𝛽0 + 𝛽1𝑥, 
the parameter estimates are given by the 

�̂�0 =
∆1𝑦𝑥𝑥

∆11𝑥𝑥
  to  

and 

�̂�1 =
∆1𝑦𝑥1

∆11𝑥𝑥
  to . 

 

For the standard regression model with rotation of variables 

𝑥 = 𝛾0 + 𝛾1𝑦 
the parameter estimates are given by the 

𝛾0 =
∆1𝑥𝑦𝑦

∆11𝑦𝑦
   to  

and 

𝛾1 =
∆1𝑥𝑦1

∆11𝑦𝑦
  to . 

 

In the first set of parameter estimates for 𝑦 = 𝛽0 + 𝛽1𝑥, the solutions (parameter estimates) 

depend on the sample size, 𝑛, and ∑𝑦2. In the second set of parameter estimates for 𝑥 = 𝛾0 +
𝛾1𝑦, depends on the sample size, 𝑛, and in this rotation, ∑𝑥2. That is, standard regression limits 

the relationship by consider the variance in one direction as related to the two adjacent 

covariances.   
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The remaining determinate is the base variance, 𝜔𝑥𝑦
2 , or second order covariance; a measure of 

the variance in level two, Figure 10, is given by 

∆𝑥𝑥𝑦𝑦= 𝑊[(𝑥. 𝑥), (𝑦, 𝑦)] − 𝑊[(𝑥, 𝑦), (𝑦, 𝑥)] = ∑𝑥2 ∑𝑦2 − (∑𝑥𝑦)
2

. 

 

𝑛 
 

 

 

 

          ∑𝑥    ∑𝑦 
 

 

 

 

    ∑𝑥2   ∑𝑥𝑦        ∑ 𝑦2 

Figure 10:  Lattice Design II depicting connects made in computing the base variance. 

 

This determinate is used in non-response analysis to estimate the coefficients that drive the 

relationship between 𝑥 and 𝑦 irrespective of the sample size, 𝑛: 

1xyy  1yxx  xxyy  

 

For the non-response model 

1 = 𝛼1𝑥 + 𝛼2𝑦 
the parameter estimates are given by the 

�̂�1 =
∆1𝑥𝑦𝑦

∆𝑥𝑥𝑦𝑦
  to  

 

and 

�̂�2 =
∆1𝑦𝑥𝑥

∆𝑥𝑥𝑦𝑦
  to . 

 

These solutions are not defined in terms of the sample size 𝑛, but rather depends on ∑𝑦2 and ∑𝑥2. 

That is, using ordinary least squares and regression to the means, non-response analysis defines 

the relationship by considering the base variance between the two directions as related to the two 

adjacent internal co-variances.  

4. Rotational analysis in three dimensional planes 
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Rotational analysis uses ordinary least squares and standard regression methods to test the 

relationship among a set of terms by rotating the terms into the response variable one at a time. 

 

Consider the three-dimensional plane defined by 

𝑑 = 𝛼1𝑎 + 𝛼2𝑏 + 𝛼3𝑐, 
where 𝑎, 𝑏, 𝑐, 𝑑 are unique elements from the observed space and unity; 𝑎, 𝑏, 𝑐, 𝑑 ∈ {1, 𝑥, 𝑦, 𝑧}. 

[
𝑑1

⋮
𝑑𝑛

] = [
𝑎1 𝑏1 𝑐1

⋮ ⋮ ⋮
𝑎𝑛 𝑏𝑛 𝑐𝑛

] [

𝛼1

𝛼2

𝛼3

] 

 

The first three rotations are standard regression and if 𝑑 = 1, then this is non-response analysis; 

however, the solutions to the normal equations are all related to the determinants as defined by 

Cramer's rule.  

 

Give the following normal equations: 

[
 
 
 
 
 ∑𝑎2 ∑𝑏𝑎 ∑ 𝑐𝑎

∑𝑎𝑏 ∑𝑏2 ∑ 𝑐𝑏

∑𝑎𝑐 ∑𝑏𝑐 ∑ 𝑐2
]
 
 
 
 
 

[

𝛼1

𝛼2

𝛼3

] =

[
 
 
 
 
 ∑𝑎𝑑

∑𝑏𝑑

∑𝑐𝑑]
 
 
 
 
 

, 

then define the main matrix and three augmented matrixes to be 

𝑊 =

[
 
 
 
 
 ∑𝑎2 ∑𝑏𝑎 ∑𝑐𝑎

∑𝑎𝑏 ∑𝑏2 ∑𝑐𝑏

∑𝑎𝑐 ∑𝑏𝑐 ∑𝑐2
]
 
 
 
 
 

,  

 

𝑊1 = [

∑𝑎𝑑 ∑𝑏𝑎 ∑𝑐𝑎

∑𝑎𝑑 ∑𝑏2 ∑𝑐𝑏

∑𝑎𝑑 ∑𝑏𝑐 ∑𝑐2

] ,𝑊2 = [

∑𝑎2 ∑𝑎𝑑 ∑𝑐𝑎
∑𝑎𝑏 ∑𝑏𝑑 ∑𝑐𝑏

∑𝑎𝑐 ∑ 𝑐𝑑 ∑𝑐2

] and 𝑊3 = [

∑𝑎2 ∑𝑏𝑎 ∑𝑎𝑑

∑𝑎𝑏 ∑𝑏2 ∑𝑏𝑑
∑𝑎𝑐 ∑𝑏𝑐 ∑ 𝑐𝑑

]. 

 

Then the parameter estimates can be determined using determinates: 𝛼𝑖 =
|𝑊𝑖|

|𝑊|
. 

 

Consider an extension of Lattice Design II to Lattice Design III, illustrated in Figure 11, to include 

{1, 𝑥, 𝑦, 𝑧}. This construct is equivalent to a pyramid that can be rotated to focus in on variable at 

a time where unity (1) is held fixed at the top in standard regression and the focus is on 𝑦, Figure 

11.  
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This figure contains all the variances, co-variances (level one and level two) as well as ternary-

variances for second-order interactions. 

 

∑12 = 𝑛  
 

 

 

 

 

 

 

∑𝑦 
 

 

    ∑𝑥          ∑𝑧  
 

∑𝑦2  
 

 

 

      ∑𝑥𝑧      ∑𝑦𝑧  
 

 

 

 

 

 

  ∑𝑥2          ∑𝑥𝑧       ∑𝑧2 
 

Figure 11:  Lattice Design III depicting random set of measures 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 through level 

two. 

 

There are four rotations which can be generalize using arbitrary directions {𝑎, 𝑏, 𝑐, 𝑑} over the 

fixed view of {1, 𝑥, 𝑦, 𝑧}. Recall the product operator be defined as ∏(𝑎, 𝑏) = 𝑎 × 𝑏 and the 

additive operator be defined by ∑(𝑎) = ∑ 𝑎𝑖
𝑛
𝑖=1 ; then we can defined the vertices in a lattice space 

to be 𝑉(𝑎, 𝑏) = ∑∏(𝑎, 𝑏) = 𝑎𝑏; and define the join between three vertices in three-dimensional 

space to be  

𝑊[(𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓)] = ∏[𝑉(𝑎, 𝑏), 𝑉(𝑐, 𝑑), 𝑉(𝑒, 𝑓)], 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ {1, 𝑥, 𝑦, 𝑧}.  
 

Then the determinates used to evaluate the parameter estimates take the form of  

 

∆𝑎𝑏𝑐𝑑𝑒𝑓= 𝑊[(𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓)] − 𝑊[(𝑎, 𝑏), (𝑐, 𝑓), (𝑒, 𝑑)] 

−𝑊[(𝑎, 𝑑), (𝑐, 𝑏), (𝑒, 𝑓)] + 𝑊[(𝑎, 𝑑), (𝑐, 𝑏), (𝑒, 𝑓)] 
+𝑊[(𝑎, 𝑏), (𝑐, 𝑓), (𝑒, 𝑑)] − 𝑊[(𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓)]. 
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 ∑𝑎2  
 

 

 

 

 

 

 

∑𝑎𝑑 
 

 

    ∑𝑎𝑏          ∑𝑎𝑐  
 

∑𝑑2  
 

 

 

      ∑𝑏𝑑      ∑𝑐𝑑  
 

 

 

 

 

 

  ∑𝑏2          ∑𝑏𝑐       ∑𝑐2 
 

Figure 12:  Lattice Design III depicting random set of measures {𝑎, 𝑏, 𝑐, 𝑑} over the fixed 

view of {1, 𝑥, 𝑦, 𝑧} through level two. 

 

Determinates needed to estimate the parameters in the rotational model 𝑑 = 𝛼1𝑎 + 𝛼2𝑏 + 𝛼3𝑐 

take the following form:  

 

Focus: 𝑦 𝑥 𝑧 1 

Denominator (∆) ⇒ 

Numerator (∆�̂�) ⇓ 

∆11𝑥𝑥𝑧𝑧 ∆11𝑦𝑦𝑧𝑧 ∆11𝑥𝑥𝑦𝑦 ∆𝑥𝑥𝑦𝑦𝑧𝑧 

𝜃1 = ∆�̂�1 ∆1𝑦𝑥𝑥𝑧𝑧 ∆1𝑥𝑦𝑦𝑧𝑧 ∆1𝑧𝑥𝑥𝑦𝑦 ∆𝑥1𝑦𝑦𝑧𝑧 

𝜃2 = ∆�̂�2 ∆11𝑥𝑦𝑧𝑧 ∆11𝑦𝑥𝑧𝑧 ∆11𝑥𝑧𝑦𝑦 ∆𝑥𝑥𝑦1𝑧𝑧 

𝜃3 = ∆�̂�3 ∆11𝑥𝑥𝑧𝑦 ∆11𝑦𝑦𝑧𝑥 ∆11𝑥𝑥𝑦𝑧 ∆𝑥𝑥𝑦𝑦𝑧1 
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The determinant in the denominator and numerator take one of two distinct forms, Form I and 

Form II, respectively. 

 

Form 1: ∆𝑎𝑎𝑏𝑏𝑐𝑐= 𝑊[(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)] − 𝑊[(𝑎, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)] 
−𝑊[(𝑏, 𝑎), (𝑏, 𝑎), (𝑐, 𝑐)] + 𝑊[(𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎)] 
+𝑊[(𝑐, 𝑎), (𝑏, 𝑎), (𝑐, 𝑏)] − 𝑊[(𝑐, 𝑎), (𝑏, 𝑏), (𝑐, 𝑏)]. 

 

Representative joins for the positive terms in Form I: 

𝑊[(𝑎, 𝑎), (𝑏, 𝑏), (𝑐, 𝑐)]   𝑊[(𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑎)]   𝑊[(𝑐, 𝑎), (𝑏, 𝑎), (𝑐, 𝑏)]  
 

 

 

 

 

 

 

 

 

 

Fig.13(a)    Fig.13(b)   Fig.13(c) 

 

Representative joins for the negative terms in Form I: 

𝑊[(𝑎, 𝑎), (𝑏, 𝑐), (𝑐, 𝑏)]  𝑊[(𝑏, 𝑎), (𝑏, 𝑎), (𝑐, 𝑐)]  𝑊[(𝑐, 𝑎), (𝑏, 𝑏), (𝑐, 𝑏)]  
 

 

 

 

 

 

 

 

 

 

Fig.13(d)    Fig.13(e)   Fig.13(f) 

 

Figure 13:  Lattice Design III depicting connects made in computing the determinate of the 

form ∆𝑎𝑎𝑏𝑏𝑐𝑐. 
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FORM II: ∆𝑎𝑑𝑏𝑏𝑐𝑐= 𝑊[(𝑎, 𝑑), (𝑏, 𝑏), (𝑐, 𝑐)] − 𝑊[(𝑎, 𝑑), (𝑏, 𝑐), (𝑐, 𝑏)] 
−𝑊[(𝑏, 𝑎), (𝑏, 𝑑), (𝑐, 𝑐)] + 𝑊[(𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑑)] 
+𝑊[(𝑐, 𝑎), (𝑏, 𝑑), (𝑐, 𝑏)] − 𝑊[(𝑐, 𝑎), (𝑏, 𝑏), (𝑐, 𝑑)]. 

 

 

Representative joins for the positive terms in Form II: 

𝑊[(𝑎, 𝑑), (𝑏, 𝑏), (𝑐, 𝑐)]   𝑊[(𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑑)]   𝑊[(𝑐, 𝑎), (𝑏, 𝑑), (𝑐, 𝑏)]  
 

 

 

 

 

 

 

 

 

 

Fig.14(a)    Fig.14(b)   Fig.14(c) 

 

Representative joins for the negative terms in Form II: 

𝑊[(𝑎, 𝑑), (𝑏, 𝑐), (𝑐, 𝑏)]  𝑊[(𝑏, 𝑎), (𝑏, 𝑑), (𝑐, 𝑐)]  𝑊[(𝑐, 𝑎), (𝑏, 𝑏), (𝑐, 𝑑)]  
 

 

 

 

 

 

 

 

 

 

Fig.14(d)    Fig.14(e)   Fig.14(f) 

 

Figure 14:  Lattice Design III depicting connects made in computing the determinate of the 

form ∆𝑎𝑑𝑏𝑏𝑐𝑐. 

 

Form II is Form I suppressed in the 𝑑 direction. Therefore, there is a close relationship between 

standard multi-linear regression and non-response analysis in construction, differing only by the 

focus 𝑥, 𝑦, 𝑧 or unity.  

 

5. Conclusion 
 

There are many common weighted means; using non-response analysis we obtain the self-

weighting mean and using the mean operator we can also define the randomly weighted mean. 

Using Cramer’s Rule, we can solve the system of equation resulting for rotating each variable term 
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into the subject response position including unity as a random variable in order to hone in on the 

true linear relationship and focus in on the error in the system in each direction and to the plane. 

 

Non-response analysis focuses in on the error in the system and not in any one direction; treating 

unity, the constant in the system, as a random effect. 

 

This type of analysis can be extended into such statistical models as 

1 = 𝛼1𝑥 + 𝛼2𝑦 + 𝛼3𝑥𝑦 
and other implicit functions including higher order terms. The usefulness of which is subject to the 

tractability of the variable measures. 
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