Tournal of Applied Sciences 10 (6): 440-450, 2010
ISSN 1812-5654
© 2010 Asian Network for Scientific Information

Parametric Analysis of Carbon Dioxide in the Atmosphere
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Abstract: Two important entities that constitute global warming are atmospheric temperature and carbon dioxide
(CO,). The present study 1s to use actual CO; data from the various locations mcluding Hawaii and Alaska and
identify the actual probability distribution functions (pdf) that probabilistically characterize its behavior. Having
such a pdf of CO, we can proceed to perform parametric statistical analysis and obtain needed useful
information. Presently, scientists working on the subject matter of CO, characterize the pdf as the classical and
popular Gaussian pdf. We have found that the three parameter Weibull pdf gives a much better fit to CO, and
the Gaussian is statistically rejected. Tn addition, we perform trend analysis and identify that the behavior of
CO, as a function of time is quadratic. We proceed to filter the data accordingly to be independent of time and
the subject data follows a general logistic pdf. Utilizing this finding we proceed to obtain ten and twenty year
projections of CO; in the atmosphere along with appropriate degrees of confidence.
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INTRODUCTION

Global warming 1s a significant event that needs
continuous monitoring in  order to have a better
understanding of the phenomenon, both cause and effect.
Many argue that the observed increase in the average
atmospheric and oceanic temperatures (Gerber, 1991) will
continue to increase over time (Hackett and Tsokos, 2009)
and others believe that this is just a natural high, that the
earth’s lifeline 13 significantly longer than human records.
That 1s, oscillation that occur every millennium cammot be
detected with data only spanning decades or even
centuries, of recorded history. As shown in Fig. 1, the
schematic view of the amount of carbon dioxide mn the
atmosphere 1s rather complex.

Some cause of warming is the increased atmospheric
concentrations of greenhouse gases including water
vapor, carbon dioxide, methane, nitrous oxide and ozone.
Atmospheric carbon dioxide (CO,) and atmospheric
temperature (T) are two important variables related
(indirectly/non-linear). The objective of the present study
15 to probabilistically determine the best probability
distribution that characterizes the behavior of CO,.
Presently scientists working in the subject area make the
assumption that CO, m the atmosphere follows the
classical Gaussian probability distribution and that 1s not
the best possible probabilistic characterization for
decision making.

It will be shown in the present study that the best-fit
probability distribution function that probabilistically
characterizes the CO, data in the atmosphere follows the
general logistic pdf. Having identified statistically the best
fit probability distribution of the subject data, it allows
scientists to determine confidence limits, testing of
hypothesis, to estimate the key parameter (expectation,
variance, etc.) that are useful in understanding the
expected behavior of CO,, return periods, among others.
For the pros and cons of global warming (Gerber, 1991,
Hackett and Tsokos, 2009; Shih and Tsckos, 2008a-c,
2009; Xu and Tsokos, 200%, 2009).

CARBON DIOXIDE DATA

The information that we shall use in the present
study consists of several data sets. The data of primary
interest is atmospheric carbon dioxide in the air recorded
at several sites located at various latitudes in the open
water in the Pacific Ocean including the Hawaiian Tslands
(Mauna Loa), shown in Fig. 2. The data was gathered and
maintained by Scripps Institution of Oceanography.
Monthly values are recorded and are expressed in parts
per million (ppm).

Figure 3 compares the carbon dioxide measurements
for the various locations shown in Fig. 2 for the years
1990 to 2004. The locations are alphabetically coded in
order from North to South. This shows that the further
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Fig. 2: Wap of monitoring sites for catbon dioxide in the atmosphere

a0
385
380
— 375 —m—: Ala
4 :Faio Banow
70 i:LaldiFim
,E ——d: idouon Lo
B o36s e Kumibrks
E . ——Ii: Thnamm Hood
—7: S
g 360 : I Sp———
H y # —#—%: Ao gHod
= 355 S —m— I0: Sowh Fd=
350
345
240
e R SR Y R R A e N RS
RYCESRXERIRAR AR RS0 TR EAR
Tin eliwe [ dvypast 010150

Fig. 3: Line graph of atmospleric cathon dioxide (ppra) by location
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Table 1: Summary of basic statistics for atmospheric carbon dioxide by

location
Mean Median
Location Count carbon dioxide  carbon dioxide SD
Alert 179 365.916 364.94 8.906
Point Barrow 176 366.047 36540 92903
La Jolla Pier 173 365.106 364.50 8.106
Mauna Loa 180 364.728 364.38 T.602
Kumukahi 180 365.148 36447 7.76
Chrigtmas Island 126 364.541 363.84 7.698
Samoa 180 363.433 362.28 7.298
Kermadec 98 361.985 361.09 T.135
Raring Head 117 360.352 358.80 6.905
South Pole 178 362.247 361.07 7.236

North, the more variability in the amounts of carbon
dioxide (ppm) and the lower variability in the South.
However, all these locations are highly correlated with the
smallest coefficient of correlation being 0.73. All locations
show an increase in atmospheric carbon dioxide (ppm)
over the years.

Furthermore, the maximum yearly concentrations
oceur every May and the mimmum yearly concentrations
occur in October. Box plots of the amount of CO, m the
atmosphere (ppm) for the various locations from A to T as
identified in Fig. 3 1s shown by Fig. 4, which support the
fact that the mean and variance in the amount of CO, in
the atmosphere depends on the location. From the North
Pole moving toward the South Pole, the further North
readings are made, the more consistent the CO, readings.
This is also clearly shown by Fig. 3; while all stations
show variability in a way of a trend and seasonal effects,
the fluctuation over time 1s sigmificantly greater further
North. Moreover, the variability shown in Fig. 4 is more
likely due to trending.

The summary of the basic descriptive statistics for all
the locations that collect data regarding CO, in
atmosphere 1s shows mn Table 1. It can be seen that the
sample mean and standard deviation are quite
homogeneous.
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Table 2: Summary statistics for atmospheric carbon dioxide-all locations

Statistic Values
Sample size 1587
Range 39.62
Mean 364.17
Variance 64.834
SD 8.052
Coef. of variation 0.02211
SE 0.20212
Skewness 0.19848
Kurtosis -0.8238

When considered collectively, we obtain the basic
descriptive statistics summarized in Table 2. The sample
mean is quite similar among the stations (Table 1).

PARAMETRIC ANALYSIS

Scientists working with CO, data as measured in the
atmosphere assume that it follows the classical Gaussian
probability distribution. We shall first show that this 1s
not a correct assumption which will lead to
misunderstanding the behavior of the subject data.
Secondly, we shall statistically identify that the best fit
probability distribution function (pdf) that characterizes
the CO, data is the three-parameter Weibull pdf.

The CO, data from Mauna Loa has a sample mean of
364.728 ppm with a sample standard deviation of 7.602. All
locations considered collectively have a sample mean of
364.165 ppm and a sample standard deviation of 8.052.
Hence, on the average there 1s no sigmficant difference
between the amount of carbon dioxide measured in
Mauna Loa, Hawail and all ten locations combined,
however, the further South, the greater the variance;
moreover, the greater the sample mean, the greater the
sample standard deviation. However, we can statistically
conclude that there is no significant difference between
these two (true) means.
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Table 3: Goodness-of-Fit Tests (all stations)

Table 5: Approximate MLE of o, B and v

Tests
Rank  Kolmogorov Smirnov  Anderson Darling  Chi-squared
1 Weibull (3P) Weibull (3P) Gen. extreme value
Gen. extrerme valie Gen. extreme value Weibull (3P)
Table 4: Goodness-of-Fit Tests (Mauna L oa, Hawaii)
Tests
Rank  Kolmogorov Smimov__Anderson Darling  Chi-squared
1 Weibull(3P) Gen. extreme value Gen. extreme value
2 Gen. extreme value Weibull (3P) Weibull 3P)

Furthermore, this data does not display symmetry nor
show bell-shaped smoothness, an indication of being
normally distributed. Furthermore, the normal probability
plot supports that the subject data’s distribution is not
Gaussian.

Under the assumption that the probability
distribution 1s unbounded, that 1s, the probability
distribution 1s not characterized by a uniform, beta,
triangular pdfs, etc. but may be characterized by one of
following pdf: Exponential, Frechet (3P), Gen. extreme
value, Gen. logistic, Gumbel max, Gumbel min, Tnv.
Gaussian, Log-logistic, Logistic, Lognormal (3P), Normal,
Pareto and Weibull.

In searching for the best possible probability
distribution that characterizes the behavior of CO,, we
tested twenty-seven different well defined probability
distributions using three standard statistical tests:
Kolmogorov Smimov Anderson-Darling and Chi-squared.
The first test, Kolmogorov Smirnov, 1s based on mimmum
difference estimation  Anderson-Darling measures
whether the data can be transformed into the uniform
probability  distribution. The Chi-square test for
goodness-of-fit is a measure of relative error squared.
Using these three measures, the Gaussian pdf did not
pass any of the tests-the Gaussian pdf does not rank in
the top five. Moreover, the three-parameter Weibull pdf
which ranks in the top two in all tests is a specific form of
the General Extreme Value pdf which also ranks in the top
two for all tests for goodness-of-fit (Table 3, 4).

Thus, we can conclude that the three-parameter
Werbull pdf best characterizes the probability distribution
of the amount of carbon dioxide in the atmosphere and its
pdf is given by:

:%[%j ) eXp{_[Xﬁ_YJ };oc>0,[3>0,y<x<oo (1)

where, v is the location, P is the scale and o is shape
parameters, respectively.

The approximate Maximum Likelihood Estimates
(MLE) of the parameters &, P and vy given n Eq. 1 are
given by Table 5.

£(x)
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Parameter estimates
o= 2.779,[%: 23.029,y=13437
&= 2.108,[%: 17.092,¥=349.6

Data source
All stations

Mauna Loa, Hawaii

Table é:  Confidence Limits of the True Mean of CQ, for all stations and

Mauna Loa
All Mauna Loa, Hawaii
Level (%0 Tower limit Upper limit Lower limit Upper limit.
99 347.125 385.6614 350.9859 387.2974
a5 349.8342 380.5356 352.5882 381.3481
90 351.6086 377.8775 353.7770 378.3632

The confidence limits for all stations and Mauna Loa, Hawaii are not
statistically different and hence the remainder of this study will concentrate
on all stations collectively

Thus, the Weibull pdf for all stations 1s given by:

Cofg) e

and for Mauna Loa, Hawaii is given by:

Pt o

The cumulative probability distribution for all the
stations is given by:
jZTN}

F(x)=1- exp{—{

and for the station located in Mauna Loa, Hawaii, is given

by
F(X)_lexp{( j }

A graphical view of Eq. 2 and 3 is given by Fig. 5 and
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f(x)=01119 - -
23.029

X-34%.6

£(x) = 0.0648 x-3496
17.092

17.092

X—3437
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4

X—349.6
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(5)

similarly the graph of Eq. 4 and 5 are shown in Fig. 6.

The above graphs show that the data considered
collectively 1s similar m distribution to the individual
station located in Mauna Loa, Hawaii. The probability
distributions are slightly skewed and this skewness 1s
more clearly illustrated at the mdividual station in
Hawaii.

Interval estimates at the 90, 95 and 99% level of
confidence are given for the true mean amount of CO, in
the atmosphere for all stations and Hawaiu based on the
three-parameter Weibull PDF are shown in Table 6.



J. Applied Sci., 10 (6): 440-450, 2010

0044 —_ Weibull (2.77,
0.0441 23.029, 343.7)

ggg%— — Weibull (2.108,
0,044 17.092, 349.6)

.036- 0.040
0.037] 0,036
0.0284 0.032+
* 0,024 w0 0.0284
= = 0024
0.0164 0.020
. 0016
0.0124 0.0124
0.008 0.008
0.0044 0.004+
O.Um- L T T T T 0‘000- L) T L) T L
350 360 370 380 390 350 360 370 380 390
X X
Fig. 5: Probability density functions
104 __ Weibull (2.779, 1.0 __ Weibull (2.108,
0.9 23.029, 343.7) 0.94 17.092, 349.6)
0.8 0.8+
0.7+ 0.74
= 0.6+ o 0.6+
& 0.5 = 0.51
0.4 0.4+
0.3 0.39
0.2 0.2
0.1+ 0.1+
0.0 T T T T T 0.0 T T T T T
350 360 370 380 3%0 350 360 370 380 390
X X

Fig. 6: Cumulative distribution functions
TREND ANATLYSIS

The mean amount of CO, present in the atmosphere
has increased over time. In part, this may be due to the
human population-regardless, both tend to vary with time.
Understanding these trends would be useful information
1n projecting how much CO, 1s present in the atmosphere,
not sumply as a constant, but as a function of time.

Consider the distributional behavior of CO, over the
14 year period as shown in Fig. 7. Here, we see that the
mean of CO, measurements n the atmosphere 1s defmitely
not constant with respect to time. That 15, there 15 a
steady  increase in the amount of carbon dioxide
measured in the atmosphere over time. This trend is
usually assumed to be constant; however, there appears
to be either a linear, quadratic or exponential trend. A
linear trend would indicate a steady increase in the mean
amount of carbon dioxide in the atmosphere whereas a
quadratic trend would indicate not only that there 1s an
increase 1n the mean, but that the rate of mcrease is
accelerating. The exponential trend also allows for the rate
to have an exponential growth with respect to time.

Linear relationship: Here, we consider the average
increase in the Atmospheric Carbon Dioxide (ACD) varies
linearly with respect to time. That is, it can be stated as a
simple statistical regression model, x(t) = B, +p,t+¢, where,
the coefficients Ps are the weights that drive the subject
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response and € is the random error. This model assumes
the rate at which the yearly mean CQ, is introduced into
the atmosphere 1s constant, dx/dt = B, and no acceleration
exists, dx/dt* = 0.

Using the CO, data from all stations, the estimated
regression model is given by:

%(t)=351.964 + 0.004553t (6)

The developed statistical model, Eq. 6 has an R* value
of 0.779; that is, it explains 79.9% of the variation in the
subject response and yields di/dt=0.004553 an increase
1n carbon dioxide in the atmosphere over a 14-year period,
from 1990 to 2004, of only 0.004553 ppm per day. This
indicates an annual increase of 1.66 ppm per year and
approximately 16.6 ppm per decade and this increase has
persisted for five decades with no signs of slowimng.

Quadratic relationship: Moreover, the residuals shown
inFig. 8 indicate that there is curvature in the relationship
of CO, and time, that is, d’x/dt’# 0. In fact, d*x/dt* > 0,
which means that the rate at which CO, 1s entering the
atmosphere is increasing with respect to time. Hence, we
will consider the second order model with respect to time
to account for this variable rate.

Consider the second-order regression model, which
allows for acceleration in the amount of CO, in the
atmosphere; that is:
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Fig. 8: Residual plot for the developed linear model
X(t) = PotP t+Patire,

where, the coefficients Ps are the weights that drive the
subject response and € 1s the random error. Using the data
from all the stations, the statistical model is estimated by:
%(t)=353.288+ 0.0030699t + 2.73729x10 "¢’ (7

The developed statistical model, Eq. 7, explains 80.5%

of the variation in the subject response. This yields
dk/dt =0.00307 + 54810 't and d*%/di* =548x107" | that is,
there has been positive increase in the rate at which
carbon dioxide 1s accumulating in the atmosphere.

Furthermore, even though this acceleration 1s extremely
small, this 1s the daily acceleration over decades.

Exponential relationship: Consider the exponential
relation, which allows for CO, to have an exponential
growth rate. The model 1s given by:

x(t) = ae™ +¢
where, a and b are the parameters that drive the estimation

of the response and € is the random error. Assuming that
E(e) = 0, the above statistical model can be written as:
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Table 7: Coefficient of determination and Chi-square
goodness of fit

test statistic for

Statistical model R-squared (%) Chi-squared

Linear 79.9 56.64

Quadratic 80.5 54.98

Exponential 80.0 56.32
% (t)=In4 +bt.

Using actual CQ, data, we find &=352.0982 and
b=1.25%107, which yields an initial rate of increase,
d%/ dt=0.0044 R whent= 0, to dx/dt =0.00552 s after 50 years.
However, if we compare this exponential model with the
linear and quadratic model as show by Fig. 9, we see that
the quadratic best fits the data except for the seasonality.
The values of the coefficient of determination R* and the
goodness-of-{it statistic ¢* further demonstrate this point,
both shown in Table 7.

Comparison of trend analysis: Tn Fig. 10 a graphical
comparison of the linear, quadratic and exponential trends
as a function of time.

Graphically, all three address the issue of the
monotonically increase trend. However, as there is
curvature the linear equation will pull away from the data
as time progresses. Moreover, using the coefficient of
determination, R* and the chi-squared measure of relative
error, the quadratic trend is the best fit statistical model.

Hence, given the developed statistical model, we can
determine the probability distribution of CO, independent
of time by filtering the data using the quadratic function
(Fig. 11). Hence, consider the residual data that remains
once the trend has been removed given by:

YO =KD - Pt Pt

We proceed to search for a pdf that best fits the data
after removing the quadratic trends. We investigate a
number of pdf including the Generalized Extreme Value
(GEV) family of pdfs and we can conclude the generalized
logistic pdf gives the best probabilistic characterization of
the filtered data over the GEV pdf that came second before
(Fig. 12).
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PARAMETRIC ANALYSIS OF FILTERED DATA

Table 8 supports the pdf choice.
The general logistic pdf is given by:

(1+&2)

_ 1z :M,H ﬁi(y_“) >0
o[ L+(1+&2)"]

[8) [8)

£(y) - (®)

where, | is the location, o is the scale and £ is the shape
parameters, respectively. The cumulative pdf of Eq. 8 1s
given by:

1
Fy)=————
) 1+(1+ &z)’%

The maximum likelihood estimates of the parameters
are £=0.07516, 1=353.05 and &=1.9448 Thus, the general
logistic pdf for the stations overall 1s given by:

1+ 007516z

fy) = ( ) T (9

1.9448[ 1+ (1+0.075162) * |

where, 7= y—353.05 for 1+ 0_07516w

1.9448 1.9448
The  comresponding  cumulative  probability
distribution is given by:
1

Fiy)= (10)

1+(1+0.07516z) s

A graphical view of Eq. 9 and 10 1s given by Fig. 13
and 14, respectively.

We shall use the cumulative probability distribution
which is shown above to generate projected rates of CO,
n the atmosphere.
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Table 8: Goodness-of-Fit Test (all stations)

Rank  Kolmogorov Smimov  Anderson Darling Chi-Squared
1 General Togistic General Logistic Gen. Ext. Value
2 Gen. Ext. Value Log-Logistic (3P) General Logistic

Table 9: Confidence Intervals for true mean of CO, for both unfiltered and
filtered data

Weibull (Unfiltered data)

General logistic (Filtered data)

Level (%0 Lower limit  Lower limit  Lower limit Upper limit
99 347.1250 385.6614 344.56 365.69
95 349.8342 380.5356 346.82 361.25
20 351.6086 377.8775 347.91 359.46

Using the General logistic pdf we obtain 90, 95 and
99% confidence intervals for the true mean amount of CO,
inthe atmosphere for the filtered data for all stations. The
results are shown in Table 9, along with the similar
confidence intervals for the time dependent data.

To compare, for the unfiltered data, the confidence
wnterval for the amount of CO, in the atmosphere with
level of sigmificance « 1s given by:

F'(e)<x<F'(1-%)
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For the filtered data recall, ¥ =% -Bt-p,t* and
solving for X(t), we have %(t)=$(t)+pt+B,t’ and hence the
confidence interval for the amount of CO, in the
atmosphere with level of significance « is given by:

where, F(x)=1-exp {—[

F' (34) +0.003699t + 2.73729x 107 t* < x(t)
<F' (L -%)+ 0.003699t +2.73729x10°7¢*

1
1+(1+0.07516z) /o

Comparing these interval estimates with those found
using the three-parameter Weibull, the general logistic pdf
gives slightly smaller lower Linits; for the 99% confidence
mtervals for unfiltered data, the three-parameter Weibull
has a lower limit of 347.125 ppm whereas for the filtered
data, the General Logistic has a lower limit of 344.56 ppm,
a difference of about 3 ppm (Fig. 15). However, there is a
significant difference in the upper limits as the increase in
CO, mn the atmosphere over time which appears as a skew
in the data when unfiltered and assumed independent of
time. Whereas the three-parameter Weibull estimates an
upper bound of 385.6614 ppm, without the increase in CO,
over time, the General Logistic estimates an upper bound
of 365.69 ppm.

_ y—353.05
1.9448

where, F(y)=

PROJECTIONS

We can utilize the cumulative pdf given by Eq. 11
that we have identified to obtain future projection of CO,
in the atmosphere with an appropriate degree of
confidence, Fig. 16.

The cumulative pdf for all the stations and filtered
data 13 given by:

1

¥—353.05
1.9448

Fiy)=

(1
1+[1+ 0.07516[

J J"%mfm

where, v(t) = x(1)-p,t-p.t°.
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Table 10: Confidence limits for the 90, 95 and 99%6 confidence intervals as
a function of time

90% CI 95% CIT 99% CI

Lower Upper  Lower Upper Lower Upper
Year  limit limit limit limit limit limit
2009 3824 393.95  381.31 395.74 379.05 400.18
2019 411.14 422,69  410.05 424.48 407.78 428.92
2020 41441 42596 413.32 427.75 411.06 432.19
2021 417.77 429.31  416.68 431.11 414.41 435.55
2022 421.19 43273 4201 434.53 417.83 438.97
2023 424.68 436.23 423.59 438.02 421.32 442.46
2024 42825 439.79  427.15 441.59 424.89 446.03
2025 431.89 443.44  430.8 445.23 428.54 449.67
2026  435.61 447.15  434.51 448.95 432.25 453.39
2027 439.39 450.94 4383 452.73 436.03 457.17
2028  443.25 454.79 442,16 456.59 439.89 461.03
2029 447.19 45874 446.1 460.53 443.83 464.97

Projecting mto the future ten years (to 2019), ata 95%
level of confidence, we have that the probable amount of
carbon dioxide in the atmosphere will be between 410.05
to 424.48 ppm, as shown by Fig. 17. Twenty years mto the
future (to 2029) at a 95% level of confidence, we have that
the probable amount of carbon dioxide in the atmosphere
will be between 446.10 and 460.53 ppm. Projecting fifty
years into the future (to 2059) at a 95% level of
confidence, we have that the probable amount of carbon
dioxide in the atmosphere will be between 598.05 and
612.48 ppm, as shown by Fig. 18.

Note that from an estimated low CO, in the
atmosphere of 379.05 ppm m 2009 to a mean of 443.83 ppm
n twenty years (2029), this 1s an estimated 17% increase.
However, in perspective, carbon dioxide is less than 1%
of the atmosphere. If 379.05 ppm represents 1% of the
atmosphere and the atmosphere 1s constant, then
443.83 ppm 18 1.17% of the atmosphere; this 1s only a
0.17% 1increase. However, carbon dioxide 1s more like
0.038% of the atmosphere (Williams, 2009). Hence, if
379.05 ppm represents 0.038% of the atmosphere and the
atmosphere 1s constant, then 443.83 ppm 1s 0.04449% of
the atmosphere; this i1s only a 0.00649% mcrease.
Confidence mtervals at the 90, 95 and 99% level of
confidence for the expected amount of carbon dioxide in
the atmosphere on the first of each year 13 given in
Table 10.
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The actual information that resulted in Fig. 17 and 18,
is given by Table 10.

CONCLUSION

The amount of carbon dioxide in the atmosphere, if
unfiltered and assumed independent of time, 1s best
characterized by the three-parameter Weibull, however,
the mean amount of carbon dioxide in the atmosphere has
increased at an accelerated rate, statistically modeled by
a quadratic function of time. The filtered information,
which 13 mdependent of time, 15 best characterized by the
general logistic probability distribution. Using the
developed model, we can estimate yearly averages in 2009
of 389.9 ppm to an average of 354.8 ppm in 2009,
approximately 10%. In the next ten years (2019), we expect
the yearly average to be 419.0 ppm, a 7% increase over
2009. In the next twenty years (2029), we expect the yearly
average to be 455.4 ppm, approximately a 17% mcrease
over 2009. However, m perspective, if the original
estimated in 1997 is 0.038% of the atmosphere in total, the
amount of carbon dioxide in the atmosphere expected to
mcrease by 0.0277% 1n the next fifty years to 0.0657% of
the atmosphere. This 15 assuming that there 1s no pomt of
saturation. Assuming that the atmospheric volume is
constant, these various elements which constitute the
atmosphere might began breaking down or transforming
mnto other compounds; for example, to compensate for an
increase in carbon dioxide, there might be a regeneration
of wetlands or forestation.
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