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Abstract

The present study considers the random phenomenon that is Red Tide as found
around the State of Florida. Among the many organism that make up Red Tide,
Karenia Brevis is the organism commonly associated with an outbreak, the prob-
ability distribution which best describes the behavior of Karenia Brevis is the
Weibull probability distribution. There are regional differences as well as regional
relationships including delay effects. Recursion rates indicate a logistic growth
model; however, additional information is needed before research can determine
the effects of runoff on Red Tide blooms.

1 Introduction
Red Tide is becoming a matter of concern in the State of Florida. There are the envi-
ronmental and health aspects that result from red tide that are of significant importance.
In addition, red tide plays a major role in the fishing industry and tourism of the State
of Florida which have a significant impact on the State’s economy. There are many
different microorganisms responsible for red tide release toxins (Steidinger, 1983) into
both the water and air. These neurotoxins can affect the respiratory and cardiac system
(Rounsefell, Nelson, 1966), reducing blood flow and slowing down the heart. Docu-
mented as early as the 1800s, large blooms killing thousands of fish. Moreover, with
the modern advances in marine technology, blooms are becoming easier to monitor as
well as storage of the gathered information and sophisticated computational powers to
run statistical algorithms to analyze and interpret the data is continuously increasing.

In the present study, we begin with available to perform descriptive statistics, which
are simple statistics, which describe the number of organism within a sample and estab-
lished that the best way to analyze the data is through a logarithmic filter that reduces
the scale and homogenizes the variance. Utilizing historical data gathered sporadically
over the past several decades, we determined that the Weibull probability distribution
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best characterize the magnitude of a bloom; that is, the probabilistic behavior of the
logarithmic transformation of the count of the organism Karenia Brevis, the primary
organism found in Red Tide (Dixon, 2003).

Secondly, we use inferential statistic to determine regional differences (Steidinger,
1973). Next, we used recursion to estimate logistically — according to the logistic
growth model — the rate at when a bloom grows. That is, estimating the subject
response (magnitude of a bloom) depending on the percent of the total capacity taken
up by the current bloom and the remaining percent of the total capacity available.

Furthermore, we proceed to establish a relationship between nutrient runoff from
the State of Florida and the magnitude of a Red Tide Bloom. That is, we developed
a statistical model of the subject response (magnitude of bloom) as a function of soil
nutrients that wash into the oceans: Sulfate SO4, Nitrate Ion NO3 and Ammonium Ion
NH4; these minerals are common in fertilizers used in agriculture. The present study
can be extended to include more precise statistical models on the subject response once
consistent concurrent data is gathered; that is, we need to establish a data bank where
not just the organism count and date are recorded but salinity, water temperature, and
other contributing variables on the same temporal scale.

The present analysis is important to the State of Florida on both an environmental
and economical point of view. Accurately estimating the size of a bloom enable us to
accurate post warnings in areas affect by and outbreak, and a better understanding of
the contributing entities that the subject response; namely, the size of a bloom will lead
to understanding of the cause and effect of Red Tide.

In the present study we will address the following issues:

1. What constitutes Red Tide?

2. What is the probability distribution of the magnitude of an outbreak that de-
scribes its behavior?

3. Recursion analysis: Logarithm Logistic Growth.

4. What is the relative growth rate of a bloom in terms of magnitude?

5. What are the regional differences in terms of magnitude of the bloom? Evaluate
and make statistical inferences regional; is the mean magnitude of a bloom in
Pensacola the same as the mean magnitude of bloom in the St. Petersburg area.

6. Determine the key contributing variables that drive Red Tide blooms.

7. Identify interactions that exist between the key attributing variables and higher
order terms.

8. Determine additional information needed to be gathered by scientist on new or
existing data.
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2 Analysis of the Various Organisms Measured in Red
Tide

There are 57 various generalized organisms found in over 56,000 samples taken over
a forty-eight year time spanning, 1954 through 2002; only thirty-one organisms are
recorded in at least ten samples and twenty-one organisms are recorded in at least one-
hundred samples; Table 1 includes a general group of “other plankton”. Only ten or-
ganisms found in at least one thousand samples that we are considering: Karenia (more
specifically Karenia Brevis), Diatom, Other Plankton, Gymnodinium, Dinoflagellates,
Micro-flagellates, Gyrodinium, Ciliates, Gonyaulax, and Peridinium.

In the present study, we will concentrate on Karenia Brevis (formerly Gymnodinium
breve). This organism, when present in sufficient numbers (thousands or millions of
cells per milliliter) turns the water red invoking the name Red Tide. Little is known
about Red Tide and its cause and effects. One question to be addressed in this study
is whether Red Tide blooms around the State of Florida are correlated, possibly with
a time delay, to the run-off from the State of Florida. First, we must analyze the main
organism associated with Red Tide: namely Karenia Brevis.

Descriptive Statistics for Karenia Brevis — Let c(t) be the concentration of Karenia
Brevis at time t, where t is measured in days since January 1, 1954. We have a sample
of these concentrations; namely, xi = c(ti) for the various samples taken at various
times ti. If we consider the raw count of this data, then there is an extreme skew in
the data as shown in Fig. 1. Fig. 1 is important because it illustrates that a common
condition found is that no Karenia Brevis exist in most of the samples. There are
numerous samples with zero count; that is, x = 0 and therefore we consider x > 0 and
the natural logarithm of the count (concentration1), lnc(t) will be considered to adjust
the scale and bring the underlying distribution into focus. Hence, this study analyzes
the conditional probability distribution of the magnitude of a bloom, given there is a
count of Karenia Brevis is greater than zero; that is, this organism is in fact present (at
least one), see Fig. 2.

Fig. 2 gives more insight into the true nature of Karenia Brevis, but there are many
records detecting a single organism; illustrated in Fig. 2, over 1500 samples contained
exactly one organism. Hence, consider when there is a bloom — meaning the count
is more than one as shown in Fig. 3. In Fig. 2, the calculated sample mean magnitude
of Red Tide bloom is 9.097, whereas in Fig. 3, given that there is a bloom (more than
one organism recorded) the sample mean magnitude of Red Tide bloom is calculated
as 10.118. Furthermore, the significantly reduced variance allows for a better estimate
of the mean magnitude of a bloom.

Consider the three subgroups: (a) no organism found (N), (b) exactly one (a single)
organism present (P) and (c) finally, when the organism is in bloom (B). Rarely is there
a single organism present (P); barely 3% of the samples recorded a count of one, see
Table 2. Normally, that is in the majority (approximately 70%) of the samples, there
are not even a single Karenia Brevis present. Only an estimated 27% of the samples
recorded is or contains a bloom; that is, more than one organism. Table 2 below gives
estimates of the percent of the data in the defined subgroups.

1Count per sampled liter.
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When we further consider the count, there is a disparity between the minimum
statistic, min

i
{lnxi} = 0.693 and the bulk of the remaining values as illustrated by

the gap in the histogram shown by Fig. 2. Consider outliers defined by Chebyshev’s
inequality: P{|x−µ| ≥ t} ≤ σ2

t2 which for t = 8.667 yields P{|x−10.118| ≥ 8.667} ≤
0.1, which implies that twenty-one outliers are present, of which only two are extreme
highs leaving nineteen lower level outliers. All nineteen of these extreme outliers are
x ∈ {2,3,4} whereas the upper outliers are x ∈ {197656000,358000000}. Empirically,
these outliers constitute approximately 0.14% of the data count in bloom.

Hence, we will redefine the categories: first, NO organism found (N) x = 0, organ-
isms Present (P), but few, 0 < x≤ 5 and finally when the organism is in full bloom (B)
x > 5. This redefining does not significantly affect the percentages in each category as
given in Table 3, but does remove the gap in the histogram Fig. 3 and illustrated by
Fig. 4. In Table 3, more precise estimates of the percent of the data in the redefined
subgroups; that is, the redefinition of a bloom to be x > 5 instead of x > 1, yields the
descriptive statistics given the chart along with the histogram illustrated by Fig. 4.
While these statistics, the mean, the median, the standard deviation and the variance
are all extremely close, the main difference is illustrated in that there is no gap in the
data in Fig. 4.

Parametric Inferential Analysis — Consider ln(ln(x)) for the samples where Kare-
nia Brevis is in full bloom and x is the concentration of Karenia Brevis in a given
sample. This transformation of the data helps indicates some form of an extreme value
distribution. The curvature of the normal probability plot given in Fig. 5 indicates that
the Weibull probability distribution would be a good fit. In fact, that the Weibull prob-
ability distribution as shown by Fig. 6 is the only distribution at the 0.01 levels that
cannot be rejected.

Thus, the best probabilistic characterization of the existing data designated by x is
the logarithmically transformed Weibull probability distribution function.

Logarithmic transformation and its properties — The data that characterizes as the
organism count in Karenia Brevis have such a large scale that a logarithmic transfor-
mation must first be taken to consider the probability distribution to be useful. This
transformed data will be referred to as the magnitude of the data; that is, {lnxi}N

i=1
which need not be based on the natural logarithm — this can be adjusted as needed to
a general base {logb xi}N

i=1. In this study, we will use the natural logarithm.
Assuming xi ≥ 1, defined {yi}N

i=1 as the magnitude of the original data set, where
yi = lnxi. Further, assume this transformed data is best fit by the two-parameter Weibull;
that is, y ∼W (θ = 0,λ,α), than consider the cumulative probability density function
given by

FY (y) =

{
1− exp

{
−
( y

λ

)α
}
, y≥ 0

0, otherwise
, (1)

where α is the shape parameter and λ is the scale parameter.
Then in terms of the original data, the transformed cumulative probability distri-

bution function, given by equation (2), yields the transformed probability distribution
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function given by equation (3). That is, we have

FX (x) = P{X ≤ x}= P{lnX < lnx}
= P{Y < lnx}= FY (lnx)

= 1− exp
{
−
(

lnx
λ

)α}
,

and

FX (x) = 1− exp
{
−
(

lnx
λ

)α}
. (2)

The probability density function of x is given by

fX (x) =
α

λx

(
lnx
λ

)α−1

exp
{
−
(

lnx
λ

)α}
, (3)

This satisfies the condition for being a probability density function,

0≤ fX (x)≤ 1, for x≥ 1

and
∞∫

1

fX (x)dx = 1.

Proof of Property 1. Since fY (y) is a probability density function such that 0≤ fY (y)≤
1 for y ≥ 0. Using the defined transformation, we have 0 ≤ fY (lnx) ≤ 1 for lnx ≥ 0;
that is x≥ 1. Hence, dividing by x, 0≤ fY (lnx)

x ≤max
x≥1

1
x = 1; that is, 0≤ fX (x)≤ 1, for

x≥ 1.

Proof of Property 2. This transformed distribution fX (x) is a probability density func-
tion. Since the transformation is continuous fX (x) =

fY (lnx)
x , we can write

∞∫
1

fX (x)dx =
∞∫

1

fY (lnx)
x

dx =
∞∫

0

fY (y)dy = 1.

Maximum Likelihood Function

L(x) =
αn

λn
n
∏
i=1

xi

n

∏
i=1

(
lnxi

λ

)α−1

exp

{
−

n

∑
i=1

(
lnx
λ

)α
}

or

lnL(x) = n lnα−n lnλ−
n

∑
i=1

lnxi +(α−1)
n

∑
i=1

lnxi

λ
−

n

∑
i=1

(
lnxi

λ

)α

.
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The MLEs of λ and α are obtained by solving the following system of two equations:

∂ lnL(x)
∂λ

=−n
λ
− (α−1)

n

∑
i=1

lnxi

λ2 −α

n

∑
i=1

1
λxi

(
lnxi

λ

)α−1

= 0

and
∂ lnL(x)

∂α
=

n
α
+

n

∑
i=1

lnxi−
n

∑
i=1

ln
(

lnxi

λ

)(
lnxi

λ

)α

= 0.

Unfortunately, it is not easy to solve this system of equations to optimize this like-
lihood function analytically. However, with the advent of recent technologies we can
accurately obtain estimates of the solution of the above equation using iterative proce-
dure (Qiao, Tsokos, 1995).

The jth moment of the random variable x is given by

EX
(
x j)= EX

(
e j lnx

)
=

∞∫
0

e j lnx fX (x)dx =
∞∫

0

e j lnx fY (lnx)
x

dx

=

∞∫
1

e jy fY (y)dy = EY
(
e jy) .

Thus, we can use the above expression to obtain estimates of the basic statistics of the
phenomenon of interest.

Let MGFY (t) = E (eyt) be the moment generating function for the standard two-
parameter Weibull in terms of the variable y. Under the given transformation, the
moment generating function for the transformed probability density function can be
expressed into terms of the original distribution. That is, we have

MGFX (t) = EX
(
etx)

=

∞∫
1

etx fX (x)dx =
∞∫

1

etx fY (lnx)
x

dx

=

∞∫
0

etey
fY (y)dy = EY

(
etey
)

= MGFY (ey)

Two-Parameter Weibull Probability Distribution Function — Using numerical
schemes, we can estimate the two-parameter Weibull. Applying the MLE yields a
scale parameter estimate of λ̂ = 11 and shape parameter estimate of α̂ = 4.2 as shown
below,

F(x) =

{
1− exp

{
− x4.2

11

}
, x > 5

0, otherwise.
(4)
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From the moment generating function, E (xn) = λnΓ
(
1+ n

k

)
, we can estimate the

sample mean, sample standard deviation, skewness and kurtosis for each of the proba-
bility distribution function and are shown in Table 4.

The three-parameter Weibull probability distribution, which gives a best-fit prob-
ability distribution using MLE yields a threshold θ̂ = 1.693114, scale parameter λ̂ =
9.395226, and shape parameter α̂ = 3.484966. This yields the cumulative probability
distribution function given by

F(x) =

{
1− exp

{
− (x−1.693114)3.484966

9.395226

}
, x > 5

0, otherwise.
(5)

The difference between the two and three-parameter Weibull probability distribu-
tions is insignificant. When considering the simple regress between the empirical prob-
ability distribution and the two and three-parameter Weibull, 99.4% of the variation in
the empirical probability is explained by the estimated two-parameter Weibull proba-
bility distribution whereas 99.5% is explained by the three-parameter Weibull proba-
bility distribution. Both of these probability distributions accepted at the same level of
significance, results shown in Table 5 below.

Since these two probability distributions are extremely close in their estimate, we
will invoke the law of parsimony and continue with the two-parameter Weibull proba-
bility distribution function. Thus, we can proceed to estimate, given Karenia Brevis is
present, the probability of exceeding a given count in a given sample as shown in Fig.
7.

In any given sample in which Karenia Brevis is present, as few as 22 organisms
could be present. However, in every ten samples in which Karenia Brevis is present,
this number jumps to 660,000 in count or lnx ≈ 13.4. In every hundred samples in
which Karenia Brevis is present, this number jumps again to 7,452,052, which implies
lnx ≈ 15.8; this is an increase of over 11-fold. Recall, that there were over 56,000
samples taken over a 48-year period, at this rate there are up to 1200 samples taken in
a year. Therefore, consider the return periods assuming 1200 samples per year, then
in any given year a sample could contain upwards of 41,243,332 count of Karenia
Brevis: that is, lnx ≈ 17.5. Up to six times that found in every hundred samples;
therefore consider the return periods for lnx > 17. That is, x > 39,824,784, see Fig. 7
and Table 6.

The maximum lnx, as shown in Table 6 above, has a high of magnitude 19.755 or
379,741,000 count in a given sample has an estimated return period of between 90 and
100 years.

Mixed Probability Distributions — Further study of the histogram, shown by Fig.
8, indicates a bimodal behavior and therefore, a mixture of the two normal probability
distributions might yield an even better fit. The mixture of two normal probability
distributions is given by

g(x | µ1,σ1,µ2,σ2,α) = α f (x | µ1,σ1)+(1−α) f (x | µ1,σ2) . (6)
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The expected value and variance of the mixed probability distribution functions are
given, respectively, by

Eg(x) = αE f1(x)+(1−α)E f2(x)

and
Vg(x) = αVf1(x)+(1−α)Vf2(x).

Both of these properties follow from the following relationship within the moments,
that is,

Eg (xp) =
∫
R

xpg(x | µ1,σ1,µ2,σ2,α)dx

= α

∫
R

xp f (x | µ1,σ1)dx+(1−α)
∫
R

xp f (x | µ1,σ1)dx

= αE f1 (x
p)+(1−α)E f2 (x

p) .

Hence, we can compute an estimate of the expected value Êg(x) = E(x) = 10.13
and variance V̂g(x) = V (x) = 2.72. First we can estimate one of the peaks by consid-
ering the mode of the magnitudes, M = 6.9, which in a normal distribution gives an
indication to the potential first mean and since the second peak is more certain and
can be estimated as µ̂2 = 12.5 this will be the initial mean. If we further assume that
the sample standard deviations are the same; that is, σ̂1 = σ̂2 = σ̂, then we can use
least squares regression to estimate the mixing factor, α. That is, consider the mixed
model given by equation (6) where pi is the cumulative empirical probability distribu-
tion given by

pi = αF (xi | µ1,σ1)+(1−α)F (xi | µ1,σ2)+ ε. (7)

If we let β = 1− α, the least-squares regression yields α̂ = 0.542792 and β̂ =
0.73584. Using these two estimates of the mixing factor, we have α̂1 = 0.542792 and
α̂2 = 0.264155, simply take the average of these two estimate results in α̂= 0.4034735.
This estimate in a better fit of the initial data to a mixed probability distribution with
χ2 = 187.34, which is very close to the Weibull probability distribution, with χ2 =
186.36.

Therefore, we further consider the first estimated mixture factor α̂ = 0.4034735 in
conjunction with the relationship given by

µ̂ = αµ̂1 +(1−α)µ̂2 (8)

to either re-estimate of the lower peak µ1 or upper peak µ2. If the upper peak is fixed
and we use the data to re-estimate the lower peak, we have µ̂1 = 6.6. This yields a
worse fit with χ2 = 225.09.

However, if we fix the lower bound and estimate the upper peak, this yields µ̂2 =
12.3 and χ2 = 167.4764.

By considering various values of α and continuously re-estimating, we can reduce
the chi-squared statistic as shown in Table 7. Furthermore, once we have established
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the best sample means that give us the additional adjustment of the sample standard
deviations using the relationship given by

σ̂
2 = ασ̂

2
1 +(1−α)σ̂2

2 (9)

in order to reduce the chi-squared statistics further, also shown in Table 7.
Note that these estimates for the mixing factor α and the first standard deviation

σ̂1 are only accurate to the second decimal, but this reduces the chi-squared statistic to
χ2 = 15.293, which indicates a better fit using the mixed statistical model.

This is a significant improvement over both the two and three-parameter Weibull
probability distribution functions with the chi-squared statistics, χ2 = 30.2782 and χ2 =
31.7121, respectively. However, as illustrated in Fig. 8, all three of these distributions
are highly correlated to the empirical probability distribution.

Once we have established the underlying probability structure, we can derive the
function that approximates the return period, we can use this information to generate
profiles.

For example, magnitudes of bloom between 17 and 18.75 occur between 0 and 10
years. Magnitudes of bloom between 19.715 and 19.755 occur every 90 to 100 years.

Once this information is known, we can estimate the probable organism counts.
For example, every 40 to 50 years blooms can reach a count between 260,991,918 and
284,146,355.

Recursion Analysis: Logarithmic Logistic Growth — Consider the year 1957 for
two reasons: first, there are 116 hourly samples taken over a twenty-nine day period
and second, all at the same location near a bridge (Gulf Blvd.) that separates the Gulf
of Mexico and Boca Ciega Bay, see Fig. 9. Hence, the remainder of this study will
concentrate on this one period of time during which data was collected on a consistent
temporal and spatial scale.

In all the years of data collecting, the most sampled year is 1957 in which 4138
samples were taken; however, 52.3% (2165) of these were taken in only four months
Fig. 10. Moreover, approximately 11% (233) of these samplings where taken at the
same location, denoted in blue in Fig. 11, are gathered on a consistent temporal scale.
Hence, we will restrict the following analysis to this time and place.

Few additional samples were taken toward the beginning of the year, but the count
was zero; however, once the outbreak was in full bloom, many samples were taken.
Therefore, unfortunately, we do not have the samples from this site until October. As
illustrated in Figs. 11 and 12, once this bloom is present the magnitude increases quite
quickly. However, it is interesting to note that for the data collected on a consistent
basis at a single site (Fig. 13), there is an oscillation in the mean daily magnitudes,
which might be explained by a logistic growth pattern.

The logistical model defined by a growth constant r, the proportion of space taken
(assuming the maximum capacity is C ≥max

i
xi and C relatively large) by

Pn = rPn−1 (C−Pn−1) .

Alternatively, if we define the present proportion as pn =
x̄n
C where x̄n is the daily

sample mean magnitude for the nth day, then this logistical model becomes pn =
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rpn−1 (1− pn−1) and given as a time series yields

p(t) = p0 + rp(t−1) [1− p(t−1)]+ ε, where p(ti) = pi. (10)

The theoretical model we propose, where estimate is given below by equation (10)
with C = 50 explains 68.72% of the variation in the percent is shown Fig. 13. This is
equivalent to saying that the maximum capacity in a liter is a bloom of magnitude 50;
or 5.18×1021 count is plausible.

The developed statistical model is given by

p̂(t) = 1.4077p(t−1) [1− p(t−1)]−0.0227. (11)

Finally, the proposed model given by equation (11) yields good estimates of the growth
of a bloom as a function of the time; this model should be used to obtain useful infor-
mation on the subject matter.

Regional Analysis and Delays — There are hundreds of various latitude and longi-
tude locations recorded, these points can be used to generate a contour plot of the lnx
over the various locations given in Fig. 10, but there are two distinct regions where
the counts have been in excess of a half million count of Karenia Brevis. Consider the
magnitude of the bloom as defined by the greatest integer function of the magnitude of
a bloom; that is, the least integer below the value, m = int[ln(x)], shown in the contour
plot in Fig. 14.

There is a slight delay, but not greatly resolved on a daily bases since samplings are
not based on a uniform temporal scale. The highest magnitude of bloom is in region 8.
With a mean magnitude of 10.872, this is approximately 23,000 more organism count
than the second highest region, the Tampa Bay. This might have to do with the fact that
there are significantly fewer samples taken at in the first region; moreover, is the fact
that these samples may have been taken when Red Tide was in full bloom and very few
samples were taken.

Contributing Variables to Red Tide Blooms — To determine the key contributing
variables that drive Red Tide blooms, more information is needed. Possible contribut-
ing “wash-off” variables suggested by IMaRS:

1. Ammonium hydroxide — a name used to describe the process of mixing an am-
monia and water.

2. Nitrate — a salt of nitric acid; Nitrate ion is a polyatomic anion.

3. Sulfate — a salt of sulfuric acid; Sulfate ion is a polyatomic anion.

These nutrient concentrates, Ci, are measured at seven sites in the State of Florida,
however distance to the bloom and estimated “wash-off” rates are needed to determine
the delay between when the constitutes are recorded on land and their direct affect on
the bloom. The difficulty in determining the relationship between runoff for the State
of Florida (or other regions) (Duke, Given, Tinoco, 2004) and Red Tide Blooms is both
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spatial and temporal. Time bias exists between measured runoff and measured Red
Tide, once the temporal bias is compensated for, Geographic Information Systems can
be used to deal with spatial bias.

Additional attributing variables measured by the National Buoy Data Center in-
clude standard meteorological data for atmospheric temperature, Ta, atmospheric pres-
sure, P, dew point, Ta, gusts, g, wind speed, w, wind direction, θ, sea surface (water)
temperature, Tw; others include distance between the bloom and these measured vari-
ables as well as salinity.

Once data is gathered for these presently lurking variables, we can develop a statis-
tical model for the response variable Red Tide as follows:

RT = f (M1,M2, . . . ,M31,C1,C2,C3,Ta,Tw,Td ,P,w,θ,d,s) .

This statistical model will include interaction between the organisms Mi ×M j,
chemical interaction between the nutrients Ci ×C j, as well as interaction between
the organisms and the nutrients Ci×M j as well as all other possible interactions and
quadratic terms such as T 2

w .
When samples taken from nearby buoys with meteorological data are considered,

preliminary studies show that there is correlation between several standard meteorolog-
ical data and the magnitude of bloom of Karenia Brevis. Table 9 gives the correlation
coefficients and ranks these variables by explanatory power with wind speed ranked
first and atmospheric temperature ranked second.

2.1 Results
The developed statistical model can be used to estimate the magnitude of a Red Tide
bloom. This is important in monitoring the magnitude of a bloom as a function of time.
The estimate of the number of organisms as a function of time can be used for public
safety and advisories. Also, the proposed model and analysis can be easily updated
once more data become available.

Furthermore, having a better understanding of regional differences enables us to
rank the regions and determine where research efforts should be concentrated. In addi-
tion, understanding the time delays between these regions establish preliminary func-
tions which can be built upon.

2.2 Discussion
The main contributor to Red Tide is Karenia Brevis. Even with the limited data avail-
able we can determine that the probability distribution of probable bloom magnitude
is best characterization of the subject response (the magnitude of the bloom) is the
Weibull probability distribution. There is no significant difference between the two
and three-parameter Weibull probability distribution function. Using this information
we can estimate that blooms can reach a high of 139 million organisms per sample
every ten years, but up 2.7 times that every hundred years. According to recursive
analysis, the relative logistic growth rate is estimated at 1.4. These results are based on
the assumption that the maximum magnitude within a sample (capacity) is 50.
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There are regional differences mainly northern and southern differences. This may
be due to the proximity of the rivers and streams to the open water, or the ebb and flow
effect the open oceans have on the Gulf and shorelines surrounding Florida. There
is a correlation between the nutrients released into the soil and surface waters with
some delay effects, but without more data on a more refined time scale, these exact
correlations and delay effects cannot be accurately modeled. For a more detailed anal-
ysis, a data bank of periodic data (preferably hourly) of the original response variable
(organism count) and the various contributing entities such as salinity at several fixed
locations needs to be established.
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Figure 1: Histogram of count of Karenia Brevis sampled over time.

Figure 2: Histogram of the natural logarithm of the count of Karenia Brevis sampled
over time, given the count was at least one.
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Figure 3: Histogram of the natural logarithm of the count of Karenia Brevis sampled
over time, given the count was at least two.

Figure 4: Histogram of the natural logarithm of the count of Karenia Brevis sampled
over time, given the count of five or more.
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Figure 5: Probability plot of the double natural logarithm of the count of Karenia Brevis
sampled over time, given the count was greater than five.

Figure 6: Histogram with best-fit distribution for the natural logarithm of the count of
Karenia Brevis sampled over time, given the count was greater than five.

Figure 7: Return periods of the natural logarithm of the count of Karenia Brevis.
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Figure 8: Comparison of the best-fit distributions and the empirical probability distri-
bution.

Figure 9: Map of location where data measured hourly.

Figure 10: Line graph of magnitude of bloom by month.
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Figure 11: Line graph of magnitude of bloom by location (latitude, longitude).

Figure 12: Line graph of magnitude of bloom at a single location at time ti.

Figure 13: Line graph of percentages based on daily mean of the data (blue) and the
estimated percentage based on the previous data.
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Figure 14: The contour plot of the natural logarithm of the count of Karenia Brevis
with respect to the sampling location (longitude, latitude).
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Table 1: Data compiled by number of times recorded in samplings. Includes total
count over time and mean count per sample as well as the organism and how it these
organisms are coded.

Code Total Count Samples Mean Count
per Sample

Organism

KARE 8772810000 56272 155900.0924 Karenia (1)
DIAT 152712300 2557 59723.23035 Diatom (2)
OTHE 1043334 2424 430.4183168 Other Plankton (3)
GYMN 108634500 2088 52028.01724 Gymnodinium (4)
DINO 42049600 1883 22331.17366 Dinoflagellates (5)
MICR 3287360000 1865 1762659.517 Micro-flagellates (6)
GYRO 8020570 1791 4478.26354 Gyrodinium (7)
CILI 22979410 1449 15858.80607 Ciliates (8)
GONY 47679000 1445 32995.84775 Gonyaulax (9)
PERI 145862172 1081 134932.629 Peridinium (10)
CERA 7063375 857 8241.97783 Ceratium
PROR 5692300 755 7539.470199 Prorocentrum
NAUP 125476.9 439 285.8243736 Nauplii
OSCI 12907406 348 37090.24713 Oscillatoria
TRIC 688423720 347 1983930.029 Trichodesmium
FLAG 267044 296 902.1756757 Flagellates
BLUE 75459800 268 281566.4179 Blue Green Algae
COPE 42321 201 210.5522388 Copepods
POLY 268663 190 1414.015789 Polykrikos
COCH 7443913 134 55551.58955 Cochlodinium
RHIZ 95.992 114 0.842035088 Rhizosolenia

Table 2: Percent by category

Group Count %
B 15042 26.731
N 39541 70.268
P 1689 3.001
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Table 3: Percent by category (redefined)

Group Count %
B 15022 26.695
N 39541 70.268
P 1709 3.037

Table 4: Statistics based on the two and three-parameter Weibull.

Statistic Estimate 2
Parameter

Estimate 3
Parameter

Number of Data 15022 15022
Mean 10.13 10.14
Standard Deviation 2.72 2.68
Variance 7.40 7.18
Skewness −0.0359 −0.0359
Kurtosis −0.6884 −0.6884

Table 5: Goodness-of-Fit Test for Weibull.

Test Statistics p-value
Kolmogorov–Smirnov D 0.0602309 Pr>D < 0.001
Cramer–von Miser W-sq 12.5414661 Pr>W-sq < 0.001
Anderson–Darling A-sq 71.3164327 Pr>A-sq < 0.001
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Table 6: Estimations for various return periods.

Return Pe-
riod
(Years2)

lnx x

Min Max Min Max
0 to 10 17 18.75 24,154,952 139,002,155
10 to 20 18.755 19.07 139,698,906 191,423,727
20 to 30 19.075 19.25 192,383,243 229,175,810
30 to 40 19.255 19.375 230,324,559 259,690,215
40 to 50 19.38 19.465 260,991,918 284,146,355
50 to 60 19.47 19.545 285,570,645 307,812,072
60 to 70 19.55 19.61 309,354,986 328,484,430
70 to 80 19.615 19.66 330,130,965 345,326,187
80 to 90 19.665 19.71 347,057,142 363,031,439
90 to 100 19.715 19.755 364,851,142 379,741,000

Table 7: Estimations of parameters and associated chi-squared statistic.

Trial µ1 µ2 σ1 σ2 α χ2

1 6.9 12.5 2.72 2.72 0.4034735 186.359
2 6.9 12.3 2.72 2.72 0.4 167.476
3 6.9 11.5 2.72 2.72 0.3 76.650
4 6.9 10.9 2.72 2.72 0.2 34.596
5 6.9 10.7 2.72 2.72 0.15 26.500
...
30 6.9 10.5 1.27 2.90 0.11 15.328
31 6.9 10.5 1.26 2.90 0.11 15.318
32 6.9 10.5 1.25 2.90 0.11 15.309
33 6.9 10.5 1.24 2.90 0.11 15.302
34 6.9 10.5 1.23 2.91 0.11 15.298
35 6.9 10.5 1.22 2.91 0.11 15.296
36 6.9 10.5 1.21 2.91 0.11 15.296
37 6.9 10.5 1.20 2.91 0.11 15.298
38 6.9 10.5 1.19 2.91 0.11 15.303
39 6.9 10.5 1.18 2.91 0.11 15.310
40 6.9 10.5 1.17 2.91 0.11 15.320
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Table 8: Correlations given various maximum capacities.

C R2 Growth
Rate r

Error ε

20 15.43 −3.3277 1.3025
30 67.28 2.6848 −0.2507
40 68.66 1.7204 −0.0679
50 68.72 1.4077 −0.0227
60 68.68 1.2543 −0.0059
70 68.64 1.1635 0.0016
80 68.61 1.1034 0.0052
90 68.58 1.0607 0.0070
100 68.56 1.0288 0.0080
150 68.49 0.9437 0.0082
200 68.45 0.9061 0.0071
1000 68.37 0.8270 0.0017
1E +14 68.35 0.8093 0.0000

Table 9: Correlation between Red Tide Bloom and Attributing Variables.

Rank Variable Correlation
Coefficient

1 w −0.41
2 Ta −0.40
3 Tw −0.29
4 Td −0.27
5 θ −0.19
6 P −0.19
7 g −0.07


